| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sseq1 4008 | . . . 4
⊢ (𝑎 = 𝑐 → (𝑎 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑏)) | 
| 2 |  | fveq2 6905 | . . . . 5
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) | 
| 3 | 2 | sseq1d 4014 | . . . 4
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑏))) | 
| 4 | 1, 3 | imbi12d 344 | . . 3
⊢ (𝑎 = 𝑐 → ((𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)))) | 
| 5 |  | sseq2 4009 | . . . 4
⊢ (𝑏 = 𝑑 → (𝑐 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑑)) | 
| 6 |  | fveq2 6905 | . . . . 5
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) | 
| 7 | 6 | sseq2d 4015 | . . . 4
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 8 | 5, 7 | imbi12d 344 | . . 3
⊢ (𝑏 = 𝑑 → ((𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)))) | 
| 9 | 4, 8 | cbvral2vw 3240 | . 2
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 10 |  | ssun1 4177 | . . . . . 6
⊢ 𝑎 ⊆ (𝑎 ∪ 𝑏) | 
| 11 |  | simprl 770 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑎 ∈ 𝒫 𝐴) | 
| 12 |  | pwuncl 7791 | . . . . . . . 8
⊢ ((𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴) → (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) | 
| 13 | 12 | adantl 481 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) | 
| 14 |  | simpl 482 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 15 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ 𝑑 ↔ 𝑎 ⊆ 𝑑)) | 
| 16 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (𝐹‘𝑐) = (𝐹‘𝑎)) | 
| 17 | 16 | sseq1d 4014 | . . . . . . . . 9
⊢ (𝑐 = 𝑎 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑑))) | 
| 18 | 15, 17 | imbi12d 344 | . . . . . . . 8
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ (𝑎 ⊆ 𝑑 → (𝐹‘𝑎) ⊆ (𝐹‘𝑑)))) | 
| 19 |  | sseq2 4009 | . . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝑎 ⊆ 𝑑 ↔ 𝑎 ⊆ (𝑎 ∪ 𝑏))) | 
| 20 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝐹‘𝑑) = (𝐹‘(𝑎 ∪ 𝑏))) | 
| 21 | 20 | sseq2d 4015 | . . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝐹‘𝑎) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 22 | 19, 21 | imbi12d 344 | . . . . . . . 8
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝑎 ⊆ 𝑑 → (𝐹‘𝑎) ⊆ (𝐹‘𝑑)) ↔ (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏))))) | 
| 23 | 18, 22 | rspc2va 3633 | . . . . . . 7
⊢ (((𝑎 ∈ 𝒫 𝐴 ∧ (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 24 | 11, 13, 14, 23 | syl21anc 837 | . . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 25 | 10, 24 | mpi 20 | . . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) | 
| 26 |  | ssun2 4178 | . . . . . 6
⊢ 𝑏 ⊆ (𝑎 ∪ 𝑏) | 
| 27 |  | simprr 772 | . . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑏 ∈ 𝒫 𝐴) | 
| 28 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑐 ⊆ 𝑑 ↔ 𝑏 ⊆ 𝑑)) | 
| 29 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝐹‘𝑐) = (𝐹‘𝑏)) | 
| 30 | 29 | sseq1d 4014 | . . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑑))) | 
| 31 | 28, 30 | imbi12d 344 | . . . . . . . 8
⊢ (𝑐 = 𝑏 → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ (𝑏 ⊆ 𝑑 → (𝐹‘𝑏) ⊆ (𝐹‘𝑑)))) | 
| 32 |  | sseq2 4009 | . . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝑏 ⊆ 𝑑 ↔ 𝑏 ⊆ (𝑎 ∪ 𝑏))) | 
| 33 | 20 | sseq2d 4015 | . . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝐹‘𝑏) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 34 | 32, 33 | imbi12d 344 | . . . . . . . 8
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝑏 ⊆ 𝑑 → (𝐹‘𝑏) ⊆ (𝐹‘𝑑)) ↔ (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏))))) | 
| 35 | 31, 34 | rspc2va 3633 | . . . . . . 7
⊢ (((𝑏 ∈ 𝒫 𝐴 ∧ (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 36 | 27, 13, 14, 35 | syl21anc 837 | . . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) | 
| 37 | 26, 36 | mpi 20 | . . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) | 
| 38 | 25, 37 | unssd 4191 | . . . 4
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) | 
| 39 | 38 | ralrimivva 3201 | . . 3
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) → ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) | 
| 40 |  | ssequn1 4185 | . . . . 5
⊢ (𝑐 ⊆ 𝑑 ↔ (𝑐 ∪ 𝑑) = 𝑑) | 
| 41 | 2 | uneq1d 4166 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∪ (𝐹‘𝑏))) | 
| 42 |  | uneq1 4160 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝑎 ∪ 𝑏) = (𝑐 ∪ 𝑏)) | 
| 43 | 42 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (𝐹‘(𝑎 ∪ 𝑏)) = (𝐹‘(𝑐 ∪ 𝑏))) | 
| 44 | 41, 43 | sseq12d 4016 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑐 → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ↔ ((𝐹‘𝑐) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑐 ∪ 𝑏)))) | 
| 45 | 6 | uneq2d 4167 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ∪ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∪ (𝐹‘𝑑))) | 
| 46 |  | uneq2 4161 | . . . . . . . . . . . . 13
⊢ (𝑏 = 𝑑 → (𝑐 ∪ 𝑏) = (𝑐 ∪ 𝑑)) | 
| 47 | 46 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → (𝐹‘(𝑐 ∪ 𝑏)) = (𝐹‘(𝑐 ∪ 𝑑))) | 
| 48 | 45, 47 | sseq12d 4016 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑑 → (((𝐹‘𝑐) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑐 ∪ 𝑏)) ↔ ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑)))) | 
| 49 | 44, 48 | rspc2va 3633 | . . . . . . . . . 10
⊢ (((𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴) ∧ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) → ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) | 
| 50 | 49 | ancoms 458 | . . . . . . . . 9
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) | 
| 51 | 50 | unssad 4192 | . . . . . . . 8
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘𝑐) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) | 
| 52 | 51 | adantr 480 | . . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) | 
| 53 |  | fveq2 6905 | . . . . . . . 8
⊢ ((𝑐 ∪ 𝑑) = 𝑑 → (𝐹‘(𝑐 ∪ 𝑑)) = (𝐹‘𝑑)) | 
| 54 | 53 | adantl 481 | . . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘(𝑐 ∪ 𝑑)) = (𝐹‘𝑑)) | 
| 55 | 52, 54 | sseqtrd 4019 | . . . . . 6
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) | 
| 56 | 55 | ex 412 | . . . . 5
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → ((𝑐 ∪ 𝑑) = 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 57 | 40, 56 | biimtrid 242 | . . . 4
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 58 | 57 | ralrimivva 3201 | . . 3
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) | 
| 59 | 39, 58 | impbii 209 | . 2
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) | 
| 60 | 9, 59 | bitri 275 | 1
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |