Step | Hyp | Ref
| Expression |
1 | | sseq1 3946 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑏)) |
2 | | fveq2 6774 |
. . . . 5
⊢ (𝑎 = 𝑐 → (𝐹‘𝑎) = (𝐹‘𝑐)) |
3 | 2 | sseq1d 3952 |
. . . 4
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑏))) |
4 | 1, 3 | imbi12d 345 |
. . 3
⊢ (𝑎 = 𝑐 → ((𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)))) |
5 | | sseq2 3947 |
. . . 4
⊢ (𝑏 = 𝑑 → (𝑐 ⊆ 𝑏 ↔ 𝑐 ⊆ 𝑑)) |
6 | | fveq2 6774 |
. . . . 5
⊢ (𝑏 = 𝑑 → (𝐹‘𝑏) = (𝐹‘𝑑)) |
7 | 6 | sseq2d 3953 |
. . . 4
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑏) ↔ (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
8 | 5, 7 | imbi12d 345 |
. . 3
⊢ (𝑏 = 𝑑 → ((𝑐 ⊆ 𝑏 → (𝐹‘𝑐) ⊆ (𝐹‘𝑏)) ↔ (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)))) |
9 | 4, 8 | cbvral2vw 3396 |
. 2
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
10 | | ssun1 4106 |
. . . . . 6
⊢ 𝑎 ⊆ (𝑎 ∪ 𝑏) |
11 | | simprl 768 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑎 ∈ 𝒫 𝐴) |
12 | | pwuncl 7620 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴) → (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) |
14 | | simpl 483 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
15 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → (𝑐 ⊆ 𝑑 ↔ 𝑎 ⊆ 𝑑)) |
16 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑎 → (𝐹‘𝑐) = (𝐹‘𝑎)) |
17 | 16 | sseq1d 3952 |
. . . . . . . . 9
⊢ (𝑐 = 𝑎 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑎) ⊆ (𝐹‘𝑑))) |
18 | 15, 17 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑐 = 𝑎 → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ (𝑎 ⊆ 𝑑 → (𝐹‘𝑎) ⊆ (𝐹‘𝑑)))) |
19 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝑎 ⊆ 𝑑 ↔ 𝑎 ⊆ (𝑎 ∪ 𝑏))) |
20 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝐹‘𝑑) = (𝐹‘(𝑎 ∪ 𝑏))) |
21 | 20 | sseq2d 3953 |
. . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝐹‘𝑎) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
22 | 19, 21 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝑎 ⊆ 𝑑 → (𝐹‘𝑎) ⊆ (𝐹‘𝑑)) ↔ (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏))))) |
23 | 18, 22 | rspc2va 3571 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝒫 𝐴 ∧ (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
24 | 11, 13, 14, 23 | syl21anc 835 |
. . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑎 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
25 | 10, 24 | mpi 20 |
. . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑎) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |
26 | | ssun2 4107 |
. . . . . 6
⊢ 𝑏 ⊆ (𝑎 ∪ 𝑏) |
27 | | simprr 770 |
. . . . . . 7
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → 𝑏 ∈ 𝒫 𝐴) |
28 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → (𝑐 ⊆ 𝑑 ↔ 𝑏 ⊆ 𝑑)) |
29 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑏 → (𝐹‘𝑐) = (𝐹‘𝑏)) |
30 | 29 | sseq1d 3952 |
. . . . . . . . 9
⊢ (𝑐 = 𝑏 → ((𝐹‘𝑐) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝑑))) |
31 | 28, 30 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → ((𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ (𝑏 ⊆ 𝑑 → (𝐹‘𝑏) ⊆ (𝐹‘𝑑)))) |
32 | | sseq2 3947 |
. . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → (𝑏 ⊆ 𝑑 ↔ 𝑏 ⊆ (𝑎 ∪ 𝑏))) |
33 | 20 | sseq2d 3953 |
. . . . . . . . 9
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝐹‘𝑏) ⊆ (𝐹‘𝑑) ↔ (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
34 | 32, 33 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑑 = (𝑎 ∪ 𝑏) → ((𝑏 ⊆ 𝑑 → (𝐹‘𝑏) ⊆ (𝐹‘𝑑)) ↔ (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏))))) |
35 | 31, 34 | rspc2va 3571 |
. . . . . . 7
⊢ (((𝑏 ∈ 𝒫 𝐴 ∧ (𝑎 ∪ 𝑏) ∈ 𝒫 𝐴) ∧ ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) → (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
36 | 27, 13, 14, 35 | syl21anc 835 |
. . . . . 6
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝑏 ⊆ (𝑎 ∪ 𝑏) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏)))) |
37 | 26, 36 | mpi 20 |
. . . . 5
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → (𝐹‘𝑏) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |
38 | 25, 37 | unssd 4120 |
. . . 4
⊢
((∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ∧ (𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴)) → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |
39 | 38 | ralrimivva 3123 |
. . 3
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) → ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |
40 | | ssequn1 4114 |
. . . . 5
⊢ (𝑐 ⊆ 𝑑 ↔ (𝑐 ∪ 𝑑) = 𝑑) |
41 | 2 | uneq1d 4096 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((𝐹‘𝑎) ∪ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∪ (𝐹‘𝑏))) |
42 | | uneq1 4090 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑐 → (𝑎 ∪ 𝑏) = (𝑐 ∪ 𝑏)) |
43 | 42 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → (𝐹‘(𝑎 ∪ 𝑏)) = (𝐹‘(𝑐 ∪ 𝑏))) |
44 | 41, 43 | sseq12d 3954 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑐 → (((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ↔ ((𝐹‘𝑐) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑐 ∪ 𝑏)))) |
45 | 6 | uneq2d 4097 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → ((𝐹‘𝑐) ∪ (𝐹‘𝑏)) = ((𝐹‘𝑐) ∪ (𝐹‘𝑑))) |
46 | | uneq2 4091 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑑 → (𝑐 ∪ 𝑏) = (𝑐 ∪ 𝑑)) |
47 | 46 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → (𝐹‘(𝑐 ∪ 𝑏)) = (𝐹‘(𝑐 ∪ 𝑑))) |
48 | 45, 47 | sseq12d 3954 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑑 → (((𝐹‘𝑐) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑐 ∪ 𝑏)) ↔ ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑)))) |
49 | 44, 48 | rspc2va 3571 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴) ∧ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) → ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) |
50 | 49 | ancoms 459 |
. . . . . . . . 9
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → ((𝐹‘𝑐) ∪ (𝐹‘𝑑)) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) |
51 | 50 | unssad 4121 |
. . . . . . . 8
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝐹‘𝑐) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) |
52 | 51 | adantr 481 |
. . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘(𝑐 ∪ 𝑑))) |
53 | | fveq2 6774 |
. . . . . . . 8
⊢ ((𝑐 ∪ 𝑑) = 𝑑 → (𝐹‘(𝑐 ∪ 𝑑)) = (𝐹‘𝑑)) |
54 | 53 | adantl 482 |
. . . . . . 7
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘(𝑐 ∪ 𝑑)) = (𝐹‘𝑑)) |
55 | 52, 54 | sseqtrd 3961 |
. . . . . 6
⊢
(((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) ∧ (𝑐 ∪ 𝑑) = 𝑑) → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) |
56 | 55 | ex 413 |
. . . . 5
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → ((𝑐 ∪ 𝑑) = 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
57 | 40, 56 | syl5bi 241 |
. . . 4
⊢
((∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) ∧ (𝑐 ∈ 𝒫 𝐴 ∧ 𝑑 ∈ 𝒫 𝐴)) → (𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
58 | 57 | ralrimivva 3123 |
. . 3
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏)) → ∀𝑐 ∈ 𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑))) |
59 | 39, 58 | impbii 208 |
. 2
⊢
(∀𝑐 ∈
𝒫 𝐴∀𝑑 ∈ 𝒫 𝐴(𝑐 ⊆ 𝑑 → (𝐹‘𝑐) ⊆ (𝐹‘𝑑)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |
60 | 9, 59 | bitri 274 |
1
⊢
(∀𝑎 ∈
𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴(𝑎 ⊆ 𝑏 → (𝐹‘𝑎) ⊆ (𝐹‘𝑏)) ↔ ∀𝑎 ∈ 𝒫 𝐴∀𝑏 ∈ 𝒫 𝐴((𝐹‘𝑎) ∪ (𝐹‘𝑏)) ⊆ (𝐹‘(𝑎 ∪ 𝑏))) |