| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprqusbas | Structured version Visualization version GIF version | ||
| Description: The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprqus.b | ⊢ 𝐵 = (Base‘𝑅) |
| opprqus.o | ⊢ 𝑂 = (oppr‘𝑅) |
| opprqus.q | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| opprqusbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| opprqusbas.i | ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| opprqusbas | ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (oppr‘𝑄) = (oppr‘𝑄) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 3 | 1, 2 | opprbas 20252 | . 2 ⊢ (Base‘𝑄) = (Base‘(oppr‘𝑄)) |
| 4 | opprqusbas.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | opprqusbas.i | . . . . 5 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) | |
| 6 | opprqus.o | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | opprqus.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 6, 7 | oppreqg 33454 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 9 | 4, 5, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 10 | 9 | qseq2d 8734 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (𝐵 / (𝑂 ~QG 𝐼))) |
| 11 | opprqus.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 13 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 14 | ovexd 7422 | . . . 4 ⊢ (𝜑 → (𝑅 ~QG 𝐼) ∈ V) | |
| 15 | 12, 13, 14, 4 | qusbas 17508 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄)) |
| 16 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))) | |
| 17 | 6, 7 | opprbas 20252 | . . . . 5 ⊢ 𝐵 = (Base‘𝑂) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
| 19 | ovexd 7422 | . . . 4 ⊢ (𝜑 → (𝑂 ~QG 𝐼) ∈ V) | |
| 20 | 6 | fvexi 6872 | . . . . 5 ⊢ 𝑂 ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ V) |
| 22 | 16, 18, 19, 21 | qusbas 17508 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑂 ~QG 𝐼)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 23 | 10, 15, 22 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 24 | 3, 23 | eqtr3id 2778 | 1 ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 / cqs 8670 Basecbs 17179 /s cqus 17468 ~QG cqg 19054 opprcoppr 20245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-minusg 18869 df-eqg 19057 df-oppr 20246 |
| This theorem is referenced by: opprqus0g 33461 opprqus1r 33463 opprqusdrng 33464 |
| Copyright terms: Public domain | W3C validator |