| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprqusbas | Structured version Visualization version GIF version | ||
| Description: The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| opprqus.b | ⊢ 𝐵 = (Base‘𝑅) |
| opprqus.o | ⊢ 𝑂 = (oppr‘𝑅) |
| opprqus.q | ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| opprqusbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| opprqusbas.i | ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| opprqusbas | ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (oppr‘𝑄) = (oppr‘𝑄) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 3 | 1, 2 | opprbas 20259 | . 2 ⊢ (Base‘𝑄) = (Base‘(oppr‘𝑄)) |
| 4 | opprqusbas.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | opprqusbas.i | . . . . 5 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) | |
| 6 | opprqus.o | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | opprqus.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 8 | 6, 7 | oppreqg 33461 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 9 | 4, 5, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 10 | 9 | qseq2d 8737 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (𝐵 / (𝑂 ~QG 𝐼))) |
| 11 | opprqus.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 13 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 14 | ovexd 7425 | . . . 4 ⊢ (𝜑 → (𝑅 ~QG 𝐼) ∈ V) | |
| 15 | 12, 13, 14, 4 | qusbas 17515 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄)) |
| 16 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))) | |
| 17 | 6, 7 | opprbas 20259 | . . . . 5 ⊢ 𝐵 = (Base‘𝑂) |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
| 19 | ovexd 7425 | . . . 4 ⊢ (𝜑 → (𝑂 ~QG 𝐼) ∈ V) | |
| 20 | 6 | fvexi 6875 | . . . . 5 ⊢ 𝑂 ∈ V |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ V) |
| 22 | 16, 18, 19, 21 | qusbas 17515 | . . 3 ⊢ (𝜑 → (𝐵 / (𝑂 ~QG 𝐼)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 23 | 10, 15, 22 | 3eqtr3d 2773 | . 2 ⊢ (𝜑 → (Base‘𝑄) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| 24 | 3, 23 | eqtr3id 2779 | 1 ⊢ (𝜑 → (Base‘(oppr‘𝑄)) = (Base‘(𝑂 /s (𝑂 ~QG 𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 / cqs 8673 Basecbs 17186 /s cqus 17475 ~QG cqg 19061 opprcoppr 20252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-minusg 18876 df-eqg 19064 df-oppr 20253 |
| This theorem is referenced by: opprqus0g 33468 opprqus1r 33470 opprqusdrng 33471 |
| Copyright terms: Public domain | W3C validator |