![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnval2 | Structured version Visualization version GIF version |
Description: Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023.) |
Ref | Expression |
---|---|
prjspnval2.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspnval2.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspnval2.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspnval2.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspnval2.x | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
prjspnval2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspnval 41941 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | |
2 | prjspnval2.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | 2 | fveq2i 6888 | . . . 4 ⊢ (ℙ𝕣𝕠𝕛‘𝑊) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) |
4 | ovex 7438 | . . . . . . 7 ⊢ (0...𝑁) ∈ V | |
5 | 2 | frlmlvec 21656 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
6 | 4, 5 | mpan2 688 | . . . . . 6 ⊢ (𝐾 ∈ DivRing → 𝑊 ∈ LVec) |
7 | prjspnval2.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
8 | prjspnval2.x | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | eqid 2726 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
10 | eqid 2726 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
11 | 7, 8, 9, 10 | prjspval 41928 | . . . . . 6 ⊢ (𝑊 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
13 | prjspnval2.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
14 | prjspnval2.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
15 | 13, 2, 7, 14, 8 | prjspnerlem 41942 | . . . . . 6 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
16 | 15 | qseq2d 8762 | . . . . 5 ⊢ (𝐾 ∈ DivRing → (𝐵 / ∼ ) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
17 | 12, 16 | eqtr4d 2769 | . . . 4 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / ∼ )) |
18 | 3, 17 | eqtr3id 2780 | . . 3 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = (𝐵 / ∼ )) |
19 | 18 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = (𝐵 / ∼ )) |
20 | 1, 19 | eqtrd 2766 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 ∖ cdif 3940 {csn 4623 {copab 5203 ‘cfv 6537 (class class class)co 7405 / cqs 8704 0cc0 11112 ℕ0cn0 12476 ...cfz 13490 Basecbs 17153 Scalarcsca 17209 ·𝑠 cvsca 17210 0gc0g 17394 DivRingcdr 20587 LVecclvec 20950 freeLMod cfrlm 21641 ℙ𝕣𝕠𝕛cprjsp 41926 ℙ𝕣𝕠𝕛ncprjspn 41939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-prds 17402 df-pws 17404 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-subrg 20471 df-drng 20589 df-lmod 20708 df-lss 20779 df-lvec 20951 df-sra 21021 df-rgmod 21022 df-dsmm 21627 df-frlm 21642 df-prjsp 41927 df-prjspn 41940 |
This theorem is referenced by: prjspnssbas 41946 prjspnn0 41947 0prjspn 41953 |
Copyright terms: Public domain | W3C validator |