Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjspnval2 | Structured version Visualization version GIF version |
Description: Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023.) |
Ref | Expression |
---|---|
prjspnval2.e | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} |
prjspnval2.w | ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) |
prjspnval2.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
prjspnval2.s | ⊢ 𝑆 = (Base‘𝐾) |
prjspnval2.x | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
prjspnval2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspnval 40376 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | |
2 | prjspnval2.w | . . . . 5 ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) | |
3 | 2 | fveq2i 6759 | . . . 4 ⊢ (ℙ𝕣𝕠𝕛‘𝑊) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) |
4 | ovex 7288 | . . . . . . 7 ⊢ (0...𝑁) ∈ V | |
5 | 2 | frlmlvec 20878 | . . . . . . 7 ⊢ ((𝐾 ∈ DivRing ∧ (0...𝑁) ∈ V) → 𝑊 ∈ LVec) |
6 | 4, 5 | mpan2 687 | . . . . . 6 ⊢ (𝐾 ∈ DivRing → 𝑊 ∈ LVec) |
7 | prjspnval2.b | . . . . . . 7 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
8 | prjspnval2.x | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | eqid 2738 | . . . . . . 7 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
10 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
11 | 7, 8, 9, 10 | prjspval 40363 | . . . . . 6 ⊢ (𝑊 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
13 | prjspnval2.e | . . . . . . 7 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} | |
14 | prjspnval2.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝐾) | |
15 | 13, 2, 7, 14, 8 | prjspnerlem 40377 | . . . . . 6 ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) |
16 | 15 | qseq2d 8513 | . . . . 5 ⊢ (𝐾 ∈ DivRing → (𝐵 / ∼ ) = (𝐵 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))})) |
17 | 12, 16 | eqtr4d 2781 | . . . 4 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘𝑊) = (𝐵 / ∼ )) |
18 | 3, 17 | eqtr3id 2793 | . . 3 ⊢ (𝐾 ∈ DivRing → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = (𝐵 / ∼ )) |
19 | 18 | adantl 481 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁))) = (𝐵 / ∼ )) |
20 | 1, 19 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 {csn 4558 {copab 5132 ‘cfv 6418 (class class class)co 7255 / cqs 8455 0cc0 10802 ℕ0cn0 12163 ...cfz 13168 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 DivRingcdr 19906 LVecclvec 20279 freeLMod cfrlm 20863 ℙ𝕣𝕠𝕛cprjsp 40361 ℙ𝕣𝕠𝕛ncprjspn 40374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-drng 19908 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-prjsp 40362 df-prjspn 40375 |
This theorem is referenced by: 0prjspn 40386 |
Copyright terms: Public domain | W3C validator |