MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Visualization version   GIF version

Theorem txcnmpt 23545
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1 𝑊 = 𝑈
txcnmpt.2 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
txcnmpt ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑊
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem txcnmpt
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7 𝑊 = 𝑈
2 eqid 2729 . . . . . . 7 𝑅 = 𝑅
31, 2cnf 23167 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊 𝑅)
43adantr 480 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊 𝑅)
54ffvelcdmda 7038 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐹𝑥) ∈ 𝑅)
6 eqid 2729 . . . . . . 7 𝑆 = 𝑆
71, 6cnf 23167 . . . . . 6 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊 𝑆)
87adantl 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊 𝑆)
98ffvelcdmda 7038 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐺𝑥) ∈ 𝑆)
105, 9opelxpd 5670 . . 3 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
11 txcnmpt.2 . . 3 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1210, 11fmptd 7068 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶( 𝑅 × 𝑆))
1311mptpreima 6199 . . . . . 6 (𝐻 “ (𝑟 × 𝑠)) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)}
144adantr 480 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝐹:𝑊 𝑅)
1514adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐹:𝑊 𝑅)
16 ffn 6670 . . . . . . . . . . . 12 (𝐹:𝑊 𝑅𝐹 Fn 𝑊)
17 elpreima 7012 . . . . . . . . . . . 12 (𝐹 Fn 𝑊 → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
1815, 16, 173syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
19 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2019adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2118, 20bitr4d 282 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝐹𝑥) ∈ 𝑟))
228ad2antrr 726 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐺:𝑊 𝑆)
23 ffn 6670 . . . . . . . . . . . 12 (𝐺:𝑊 𝑆𝐺 Fn 𝑊)
24 elpreima 7012 . . . . . . . . . . . 12 (𝐺 Fn 𝑊 → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2522, 23, 243syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
26 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2726adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2825, 27bitr4d 282 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝐺𝑥) ∈ 𝑠))
2921, 28anbi12d 632 . . . . . . . . 9 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠)))
30 elin 3927 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ (𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)))
31 opelxp 5667 . . . . . . . . 9 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠))
3229, 30, 313bitr4g 314 . . . . . . . 8 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)))
3332rabbi2dva 4185 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)})
34 inss1 4196 . . . . . . . . . 10 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ (𝐹𝑟)
35 cnvimass 6042 . . . . . . . . . 10 (𝐹𝑟) ⊆ dom 𝐹
3634, 35sstri 3953 . . . . . . . . 9 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ dom 𝐹
3736, 14fssdm 6689 . . . . . . . 8 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊)
38 sseqin2 4182 . . . . . . . 8 (((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
3937, 38sylib 218 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4033, 39eqtr3d 2766 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)} = ((𝐹𝑟) ∩ (𝐺𝑠)))
4113, 40eqtrid 2776 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) = ((𝐹𝑟) ∩ (𝐺𝑠)))
42 cntop1 23161 . . . . . . . 8 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top)
4342adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top)
4443adantr 480 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝑈 ∈ Top)
45 cnima 23186 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟𝑅) → (𝐹𝑟) ∈ 𝑈)
4645ad2ant2r 747 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐹𝑟) ∈ 𝑈)
47 cnima 23186 . . . . . . 7 ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠𝑆) → (𝐺𝑠) ∈ 𝑈)
4847ad2ant2l 746 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐺𝑠) ∈ 𝑈)
49 inopn 22820 . . . . . 6 ((𝑈 ∈ Top ∧ (𝐹𝑟) ∈ 𝑈 ∧ (𝐺𝑠) ∈ 𝑈) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5044, 46, 48, 49syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5141, 50eqeltrd 2828 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
5251ralrimivva 3178 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
53 vex 3448 . . . . . 6 𝑟 ∈ V
54 vex 3448 . . . . . 6 𝑠 ∈ V
5553, 54xpex 7709 . . . . 5 (𝑟 × 𝑠) ∈ V
5655rgen2w 3049 . . . 4 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
57 eqid 2729 . . . . 5 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
58 imaeq2 6016 . . . . . 6 (𝑧 = (𝑟 × 𝑠) → (𝐻𝑧) = (𝐻 “ (𝑟 × 𝑠)))
5958eleq1d 2813 . . . . 5 (𝑧 = (𝑟 × 𝑠) → ((𝐻𝑧) ∈ 𝑈 ↔ (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6057, 59ralrnmpo 7508 . . . 4 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6156, 60ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
6252, 61sylibr 234 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)
631toptopon 22838 . . . 4 (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊))
6443, 63sylib 218 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊))
65 cntop2 23162 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
66 cntop2 23162 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
67 eqid 2729 . . . . 5 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
6867txval 23485 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
6965, 66, 68syl2an 596 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
70 toptopon2 22839 . . . . 5 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
7165, 70sylib 218 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘ 𝑅))
72 toptopon2 22839 . . . . 5 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
7366, 72sylib 218 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘ 𝑆))
74 txtopon 23512 . . . 4 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7571, 73, 74syl2an 596 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7664, 69, 75tgcn 23173 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶( 𝑅 × 𝑆) ∧ ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)))
7712, 62, 76mpbir2and 713 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  cin 3910  wss 3911  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  topGenctg 17377  Topctop 22814  TopOnctopon 22831   Cn ccn 23145   ×t ctx 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-topgen 17383  df-top 22815  df-topon 22832  df-bases 22867  df-cn 23148  df-tx 23483
This theorem is referenced by:  uptx  23546  hauseqlcld  23567  txkgen  23573  cnmpt1t  23586  cnmpt2t  23594  txpconn  35213
  Copyright terms: Public domain W3C validator