MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Visualization version   GIF version

Theorem txcnmpt 22683
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1 𝑊 = 𝑈
txcnmpt.2 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
txcnmpt ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑊
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem txcnmpt
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7 𝑊 = 𝑈
2 eqid 2738 . . . . . . 7 𝑅 = 𝑅
31, 2cnf 22305 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊 𝑅)
43adantr 480 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊 𝑅)
54ffvelrnda 6943 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐹𝑥) ∈ 𝑅)
6 eqid 2738 . . . . . . 7 𝑆 = 𝑆
71, 6cnf 22305 . . . . . 6 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊 𝑆)
87adantl 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊 𝑆)
98ffvelrnda 6943 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐺𝑥) ∈ 𝑆)
105, 9opelxpd 5618 . . 3 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
11 txcnmpt.2 . . 3 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1210, 11fmptd 6970 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶( 𝑅 × 𝑆))
1311mptpreima 6130 . . . . . 6 (𝐻 “ (𝑟 × 𝑠)) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)}
144adantr 480 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝐹:𝑊 𝑅)
1514adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐹:𝑊 𝑅)
16 ffn 6584 . . . . . . . . . . . 12 (𝐹:𝑊 𝑅𝐹 Fn 𝑊)
17 elpreima 6917 . . . . . . . . . . . 12 (𝐹 Fn 𝑊 → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
1815, 16, 173syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
19 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2019adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2118, 20bitr4d 281 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝐹𝑥) ∈ 𝑟))
228ad2antrr 722 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐺:𝑊 𝑆)
23 ffn 6584 . . . . . . . . . . . 12 (𝐺:𝑊 𝑆𝐺 Fn 𝑊)
24 elpreima 6917 . . . . . . . . . . . 12 (𝐺 Fn 𝑊 → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2522, 23, 243syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
26 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2726adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2825, 27bitr4d 281 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝐺𝑥) ∈ 𝑠))
2921, 28anbi12d 630 . . . . . . . . 9 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠)))
30 elin 3899 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ (𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)))
31 opelxp 5616 . . . . . . . . 9 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠))
3229, 30, 313bitr4g 313 . . . . . . . 8 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)))
3332rabbi2dva 4148 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)})
34 inss1 4159 . . . . . . . . . 10 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ (𝐹𝑟)
35 cnvimass 5978 . . . . . . . . . 10 (𝐹𝑟) ⊆ dom 𝐹
3634, 35sstri 3926 . . . . . . . . 9 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ dom 𝐹
3736, 14fssdm 6604 . . . . . . . 8 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊)
38 sseqin2 4146 . . . . . . . 8 (((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
3937, 38sylib 217 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4033, 39eqtr3d 2780 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)} = ((𝐹𝑟) ∩ (𝐺𝑠)))
4113, 40eqtrid 2790 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) = ((𝐹𝑟) ∩ (𝐺𝑠)))
42 cntop1 22299 . . . . . . . 8 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top)
4342adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top)
4443adantr 480 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝑈 ∈ Top)
45 cnima 22324 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟𝑅) → (𝐹𝑟) ∈ 𝑈)
4645ad2ant2r 743 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐹𝑟) ∈ 𝑈)
47 cnima 22324 . . . . . . 7 ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠𝑆) → (𝐺𝑠) ∈ 𝑈)
4847ad2ant2l 742 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐺𝑠) ∈ 𝑈)
49 inopn 21956 . . . . . 6 ((𝑈 ∈ Top ∧ (𝐹𝑟) ∈ 𝑈 ∧ (𝐺𝑠) ∈ 𝑈) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5044, 46, 48, 49syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5141, 50eqeltrd 2839 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
5251ralrimivva 3114 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
53 vex 3426 . . . . . 6 𝑟 ∈ V
54 vex 3426 . . . . . 6 𝑠 ∈ V
5553, 54xpex 7581 . . . . 5 (𝑟 × 𝑠) ∈ V
5655rgen2w 3076 . . . 4 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
57 eqid 2738 . . . . 5 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
58 imaeq2 5954 . . . . . 6 (𝑧 = (𝑟 × 𝑠) → (𝐻𝑧) = (𝐻 “ (𝑟 × 𝑠)))
5958eleq1d 2823 . . . . 5 (𝑧 = (𝑟 × 𝑠) → ((𝐻𝑧) ∈ 𝑈 ↔ (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6057, 59ralrnmpo 7390 . . . 4 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6156, 60ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
6252, 61sylibr 233 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)
631toptopon 21974 . . . 4 (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊))
6443, 63sylib 217 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊))
65 cntop2 22300 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
66 cntop2 22300 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
67 eqid 2738 . . . . 5 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
6867txval 22623 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
6965, 66, 68syl2an 595 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
70 toptopon2 21975 . . . . 5 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
7165, 70sylib 217 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘ 𝑅))
72 toptopon2 21975 . . . . 5 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
7366, 72sylib 217 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘ 𝑆))
74 txtopon 22650 . . . 4 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7571, 73, 74syl2an 595 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7664, 69, 75tgcn 22311 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶( 𝑅 × 𝑆) ∧ ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)))
7712, 62, 76mpbir2and 709 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cin 3882  wss 3883  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  topGenctg 17065  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621
This theorem is referenced by:  uptx  22684  hauseqlcld  22705  txkgen  22711  cnmpt1t  22724  cnmpt2t  22732  txpconn  33094
  Copyright terms: Public domain W3C validator