MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Visualization version   GIF version

Theorem txcnmpt 23653
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1 𝑊 = 𝑈
txcnmpt.2 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
Assertion
Ref Expression
txcnmpt ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑊
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem txcnmpt
Dummy variables 𝑠 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7 𝑊 = 𝑈
2 eqid 2740 . . . . . . 7 𝑅 = 𝑅
31, 2cnf 23275 . . . . . 6 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝐹:𝑊 𝑅)
43adantr 480 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐹:𝑊 𝑅)
54ffvelcdmda 7118 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐹𝑥) ∈ 𝑅)
6 eqid 2740 . . . . . . 7 𝑆 = 𝑆
71, 6cnf 23275 . . . . . 6 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝐺:𝑊 𝑆)
87adantl 481 . . . . 5 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐺:𝑊 𝑆)
98ffvelcdmda 7118 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → (𝐺𝑥) ∈ 𝑆)
105, 9opelxpd 5739 . . 3 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ 𝑥𝑊) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ ( 𝑅 × 𝑆))
11 txcnmpt.2 . . 3 𝐻 = (𝑥𝑊 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
1210, 11fmptd 7148 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻:𝑊⟶( 𝑅 × 𝑆))
1311mptpreima 6269 . . . . . 6 (𝐻 “ (𝑟 × 𝑠)) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)}
144adantr 480 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝐹:𝑊 𝑅)
1514adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐹:𝑊 𝑅)
16 ffn 6747 . . . . . . . . . . . 12 (𝐹:𝑊 𝑅𝐹 Fn 𝑊)
17 elpreima 7091 . . . . . . . . . . . 12 (𝐹 Fn 𝑊 → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
1815, 16, 173syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
19 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2019adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐹𝑥) ∈ 𝑟 ↔ (𝑥𝑊 ∧ (𝐹𝑥) ∈ 𝑟)))
2118, 20bitr4d 282 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐹𝑟) ↔ (𝐹𝑥) ∈ 𝑟))
228ad2antrr 725 . . . . . . . . . . . 12 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → 𝐺:𝑊 𝑆)
23 ffn 6747 . . . . . . . . . . . 12 (𝐺:𝑊 𝑆𝐺 Fn 𝑊)
24 elpreima 7091 . . . . . . . . . . . 12 (𝐺 Fn 𝑊 → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2522, 23, 243syl 18 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
26 ibar 528 . . . . . . . . . . . 12 (𝑥𝑊 → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2726adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝐺𝑥) ∈ 𝑠 ↔ (𝑥𝑊 ∧ (𝐺𝑥) ∈ 𝑠)))
2825, 27bitr4d 282 . . . . . . . . . 10 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ (𝐺𝑠) ↔ (𝐺𝑥) ∈ 𝑠))
2921, 28anbi12d 631 . . . . . . . . 9 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → ((𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠)))
30 elin 3992 . . . . . . . . 9 (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ (𝑥 ∈ (𝐹𝑟) ∧ 𝑥 ∈ (𝐺𝑠)))
31 opelxp 5736 . . . . . . . . 9 (⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠) ↔ ((𝐹𝑥) ∈ 𝑟 ∧ (𝐺𝑥) ∈ 𝑠))
3229, 30, 313bitr4g 314 . . . . . . . 8 ((((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) ∧ 𝑥𝑊) → (𝑥 ∈ ((𝐹𝑟) ∩ (𝐺𝑠)) ↔ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)))
3332rabbi2dva 4247 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)})
34 inss1 4258 . . . . . . . . . 10 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ (𝐹𝑟)
35 cnvimass 6111 . . . . . . . . . 10 (𝐹𝑟) ⊆ dom 𝐹
3634, 35sstri 4018 . . . . . . . . 9 ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ dom 𝐹
3736, 14fssdm 6766 . . . . . . . 8 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊)
38 sseqin2 4244 . . . . . . . 8 (((𝐹𝑟) ∩ (𝐺𝑠)) ⊆ 𝑊 ↔ (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
3937, 38sylib 218 . . . . . . 7 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝑊 ∩ ((𝐹𝑟) ∩ (𝐺𝑠))) = ((𝐹𝑟) ∩ (𝐺𝑠)))
4033, 39eqtr3d 2782 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → {𝑥𝑊 ∣ ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ (𝑟 × 𝑠)} = ((𝐹𝑟) ∩ (𝐺𝑠)))
4113, 40eqtrid 2792 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) = ((𝐹𝑟) ∩ (𝐺𝑠)))
42 cntop1 23269 . . . . . . . 8 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑈 ∈ Top)
4342adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ Top)
4443adantr 480 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → 𝑈 ∈ Top)
45 cnima 23294 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝑟𝑅) → (𝐹𝑟) ∈ 𝑈)
4645ad2ant2r 746 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐹𝑟) ∈ 𝑈)
47 cnima 23294 . . . . . . 7 ((𝐺 ∈ (𝑈 Cn 𝑆) ∧ 𝑠𝑆) → (𝐺𝑠) ∈ 𝑈)
4847ad2ant2l 745 . . . . . 6 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐺𝑠) ∈ 𝑈)
49 inopn 22926 . . . . . 6 ((𝑈 ∈ Top ∧ (𝐹𝑟) ∈ 𝑈 ∧ (𝐺𝑠) ∈ 𝑈) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5044, 46, 48, 49syl3anc 1371 . . . . 5 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝐹𝑟) ∩ (𝐺𝑠)) ∈ 𝑈)
5141, 50eqeltrd 2844 . . . 4 (((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) ∧ (𝑟𝑅𝑠𝑆)) → (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
5251ralrimivva 3208 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
53 vex 3492 . . . . . 6 𝑟 ∈ V
54 vex 3492 . . . . . 6 𝑠 ∈ V
5553, 54xpex 7788 . . . . 5 (𝑟 × 𝑠) ∈ V
5655rgen2w 3072 . . . 4 𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V
57 eqid 2740 . . . . 5 (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
58 imaeq2 6085 . . . . . 6 (𝑧 = (𝑟 × 𝑠) → (𝐻𝑧) = (𝐻 “ (𝑟 × 𝑠)))
5958eleq1d 2829 . . . . 5 (𝑧 = (𝑟 × 𝑠) → ((𝐻𝑧) ∈ 𝑈 ↔ (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6057, 59ralrnmpo 7589 . . . 4 (∀𝑟𝑅𝑠𝑆 (𝑟 × 𝑠) ∈ V → (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈))
6156, 60ax-mp 5 . . 3 (∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈 ↔ ∀𝑟𝑅𝑠𝑆 (𝐻 “ (𝑟 × 𝑠)) ∈ 𝑈)
6252, 61sylibr 234 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)
631toptopon 22944 . . . 4 (𝑈 ∈ Top ↔ 𝑈 ∈ (TopOn‘𝑊))
6443, 63sylib 218 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝑈 ∈ (TopOn‘𝑊))
65 cntop2 23270 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ Top)
66 cntop2 23270 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ Top)
67 eqid 2740 . . . . 5 ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠)) = ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))
6867txval 23593 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
6965, 66, 68syl2an 595 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))))
70 toptopon2 22945 . . . . 5 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
7165, 70sylib 218 . . . 4 (𝐹 ∈ (𝑈 Cn 𝑅) → 𝑅 ∈ (TopOn‘ 𝑅))
72 toptopon2 22945 . . . . 5 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
7366, 72sylib 218 . . . 4 (𝐺 ∈ (𝑈 Cn 𝑆) → 𝑆 ∈ (TopOn‘ 𝑆))
74 txtopon 23620 . . . 4 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7571, 73, 74syl2an 595 . . 3 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝑅 ×t 𝑆) ∈ (TopOn‘( 𝑅 × 𝑆)))
7664, 69, 75tgcn 23281 . 2 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → (𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ (𝐻:𝑊⟶( 𝑅 × 𝑆) ∧ ∀𝑧 ∈ ran (𝑟𝑅, 𝑠𝑆 ↦ (𝑟 × 𝑠))(𝐻𝑧) ∈ 𝑈)))
7712, 62, 76mpbir2and 712 1 ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cin 3975  wss 3976  cop 4654   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  topGenctg 17497  Topctop 22920  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591
This theorem is referenced by:  uptx  23654  hauseqlcld  23675  txkgen  23681  cnmpt1t  23694  cnmpt2t  23702  txpconn  35200
  Copyright terms: Public domain W3C validator