MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Visualization version   GIF version

Theorem lhop1 26038
Description: L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
Assertion
Ref Expression
lhop1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Distinct variable groups:   𝑧,𝐵   𝜑,𝑧   𝑧,𝐴   𝑧,𝐶   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop1
Dummy variables 𝑒 𝑑 𝑟 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2 simpr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
32rphalfcld 13082 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4 breq2 5157 . . . . . . . . . 10 (𝑒 = (𝑥 / 2) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)))
54imbi2d 339 . . . . . . . . 9 (𝑒 = (𝑥 / 2) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
65rexralbidv 3211 . . . . . . . 8 (𝑒 = (𝑥 / 2) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
76rspcv 3604 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
83, 7syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
9 rabid 3440 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ (𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑))
10 eliooord 13437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑣𝑣 < 𝐵))
1110adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑣𝑣 < 𝐵))
1211simprd 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 < 𝐵)
1312biantrurd 531 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < (𝑑 + 𝐴) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
14 ioossre 13439 . . . . . . . . . . . . . . . . . . . . 21 (𝐴(,)𝐵) ⊆ ℝ
15 simpr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ (𝐴(,)𝐵))
1614, 15sselid 3977 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ)
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
1817ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
19 simpr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 13070 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑑 ∈ ℝ)
2216, 18, 21ltsubaddd 11860 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴) < 𝑑𝑣 < (𝑑 + 𝐴)))
2316rexrd 11314 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ*)
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ*)
2524ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
2617ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐴 ∈ ℝ)
2720, 26readdcld 11293 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ)
2827rexrd 11314 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ*)
2928adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑑 + 𝐴) ∈ ℝ*)
30 xrltmin 13215 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3123, 25, 29, 30syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3213, 22, 313bitr4rd 311 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣𝐴) < 𝑑))
3318rexrd 11314 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
3425, 29ifcld 4579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
3511simpld 493 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑣)
36 elioo5 13435 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (𝐴 < 𝑣𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
3736baibd 538 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) ∧ 𝐴 < 𝑣) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3833, 34, 23, 35, 37syl31anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3918, 16, 35ltled 11412 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴𝑣)
4018, 16, 39abssubge0d 15436 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (abs‘(𝑣𝐴)) = (𝑣𝐴))
4140breq1d 5163 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (𝑣𝐴) < 𝑑))
4232, 38, 413bitr4d 310 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (abs‘(𝑣𝐴)) < 𝑑))
4342rabbi2dva 4219 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑})
4424ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ*)
45 xrmin1 13210 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
4644, 28, 45syl2anc 582 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
47 iooss2 13414 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
4844, 46, 47syl2anc 582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
49 sseqin2 4216 . . . . . . . . . . . . . . . . 17 ((𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5048, 49sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5143, 50eqtr3d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5251eleq2d 2812 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
539, 52bitr3id 284 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
54 lbioo 13409 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 𝐴 ∈ (𝐴(,)𝐵)
55 eleq1 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
5654, 55mtbiri 326 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐴 → ¬ 𝑦 ∈ (𝐴(,)𝐵))
5756necon2ai 2960 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦𝐴)
5857biantrurd 531 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑)))
5958bicomd 222 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) ↔ (abs‘(𝑦𝐴)) < 𝑑))
60 fveq2 6901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑦))
61 fveq2 6901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑦))
6260, 61oveq12d 7442 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
63 eqid 2726 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
64 ovex 7457 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ V
6562, 63, 64fvmpt3i 7014 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
6665fvoveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)))
6766breq1d 5163 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2) ↔ (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
6859, 67imbi12d 343 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))))
6968ralbiia 3081 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
70 fvoveq1 7447 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → (abs‘(𝑣𝐴)) = (abs‘(𝑦𝐴)))
7170breq1d 5163 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (abs‘(𝑦𝐴)) < 𝑑))
7271ralrab 3687 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7369, 72bitr4i 277 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
7451adantrr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
7574raleqdv 3315 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7617ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ)
7724ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐵 ∈ ℝ*)
78 lhop1.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
7978ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < 𝐵)
80 lhop1.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
8180ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
82 lhop1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8382ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
84 lhop1.if . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
86 lhop1.ig . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
8786ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
88 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
8988ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐹 lim 𝐴))
90 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
9190ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐺 lim 𝐴))
92 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran 𝐺)
9392ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran 𝐺)
94 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
9594ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran (ℝ D 𝐺))
961ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
973adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
9876rexrd 11314 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ*)
99 simprll 777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ+)
10099rpred 13070 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ)
101100, 76readdcld 11293 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ)
102 iocssre 13458 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10398, 101, 102syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10477adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐵 ∈ ℝ*)
105100adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝑑 ∈ ℝ)
10676adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐴 ∈ ℝ)
107105, 106readdcld 11293 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ)
108107rexrd 11314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ*)
109104, 108ifclda 4568 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
11076, 99ltaddrp2d 13104 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < (𝑑 + 𝐴))
111101rexrd 11314 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ*)
112 xrltmin 13215 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11398, 77, 111, 112syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11479, 110, 113mpbir2and 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))
115 xrmin2 13211 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
11677, 111, 115syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
117 elioc1 13420 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
11898, 111, 117syl2anc 582 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
119109, 114, 116, 118mpbir3and 1339 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)))
120103, 119sseldd 3980 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ)
12177, 111, 45syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
122 simprlr 778 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
123 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
124 eqid 2726 . . . . . . . . . . . . . . . . . . 19 (𝐴 + (𝑟 / 2)) = (𝐴 + (𝑟 / 2))
12576, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 120, 121, 122, 123, 124lhop1lem 26037 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < (2 · (𝑥 / 2)))
1262rpcnd 13072 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
127 2cnd 12342 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
128 2ne0 12368 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
129128a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
130126, 127, 129divcan2d 12043 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 / 2)) = 𝑥)
131130adantr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (2 · (𝑥 / 2)) = 𝑥)
132125, 131breqtrd 5179 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)
133132expr 455 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13475, 133sylbid 239 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13573, 134biimtrid 241 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
136135expr 455 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
13753, 136sylbid 239 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
138137expdimp 451 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
139 fveq2 6901 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐹𝑧) = (𝐹𝑣))
140 fveq2 6901 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
141139, 140oveq12d 7442 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ((𝐹𝑧) / (𝐺𝑧)) = ((𝐹𝑣) / (𝐺𝑣)))
142 eqid 2726 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
143 ovex 7457 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) / (𝐺𝑧)) ∈ V
144141, 142, 143fvmpt3i 7014 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) = ((𝐹𝑣) / (𝐺𝑣)))
145144fvoveq1d 7446 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) = (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)))
146145breq1d 5163 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥 ↔ (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
147146imbi2d 339 . . . . . . . . . . . 12 (𝑣 ∈ (𝐴(,)𝐵) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
148147adantl 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
149138, 148sylibrd 258 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
150149adantld 489 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
151150com23 86 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
152151ralrimdva 3144 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∀𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
153152reximdva 3158 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
1548, 153syld 47 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
155154ralrimdva 3144 . . . 4 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
156155anim2d 610 . . 3 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒)) → (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
157 dvf 25927 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
15884feq2d 6714 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
159157, 158mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
160159ffvelcdmda 7098 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
161 dvf 25927 . . . . . . . 8 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
16286feq2d 6714 . . . . . . . 8 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
163161, 162mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
164163ffvelcdmda 7098 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
16594adantr 479 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
166163ffnd 6729 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
167 fnfvelrn 7094 . . . . . . . . . 10 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
168166, 167sylan 578 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
169 eleq1 2814 . . . . . . . . 9 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
170168, 169syl5ibcom 244 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
171170necon3bd 2944 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
172165, 171mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
173160, 164, 172divcld 12041 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
174173fmpttd 7129 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))):(𝐴(,)𝐵)⟶ℂ)
175 ax-resscn 11215 . . . . . 6 ℝ ⊆ ℂ
17614, 175sstri 3989 . . . . 5 (𝐴(,)𝐵) ⊆ ℂ
177176a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
17817recnd 11292 . . . 4 (𝜑𝐴 ∈ ℂ)
179174, 177, 178ellimc3 25899 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒))))
18080ffvelcdmda 7098 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
181180recnd 11292 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
18282ffvelcdmda 7098 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
183182recnd 11292 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
18492adantr 479 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
18582ffnd 6729 . . . . . . . . . 10 (𝜑𝐺 Fn (𝐴(,)𝐵))
186 fnfvelrn 7094 . . . . . . . . . 10 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
187185, 186sylan 578 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
188 eleq1 2814 . . . . . . . . 9 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
189187, 188syl5ibcom 244 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
190189necon3bd 2944 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
191184, 190mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
192181, 183, 191divcld 12041 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
193192fmpttd 7129 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
194193, 177, 178ellimc3 25899 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
195156, 179, 1943imtr4d 293 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴)))
1961, 195mpd 15 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  cin 3946  wss 3947  ifcif 4533   class class class wbr 5153  cmpt 5236  dom cdm 5682  ran crn 5683   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158   + caddc 11161   · cmul 11163  *cxr 11297   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  2c2 12319  +crp 13028  (,)cioo 13378  (,]cioc 13379  abscabs 15239   lim climc 25882   D cdv 25883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887
This theorem is referenced by:  lhop2  26039  lhop  26040  fourierdlem61  45788
  Copyright terms: Public domain W3C validator