MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Visualization version   GIF version

Theorem lhop1 26053
Description: L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
Assertion
Ref Expression
lhop1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Distinct variable groups:   𝑧,𝐵   𝜑,𝑧   𝑧,𝐴   𝑧,𝐶   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop1
Dummy variables 𝑒 𝑑 𝑟 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
32rphalfcld 13089 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4 breq2 5147 . . . . . . . . . 10 (𝑒 = (𝑥 / 2) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)))
54imbi2d 340 . . . . . . . . 9 (𝑒 = (𝑥 / 2) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
65rexralbidv 3223 . . . . . . . 8 (𝑒 = (𝑥 / 2) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
76rspcv 3618 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
83, 7syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
9 rabid 3458 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ (𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑))
10 eliooord 13446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑣𝑣 < 𝐵))
1110adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑣𝑣 < 𝐵))
1211simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 < 𝐵)
1312biantrurd 532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < (𝑑 + 𝐴) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
14 ioossre 13448 . . . . . . . . . . . . . . . . . . . . 21 (𝐴(,)𝐵) ⊆ ℝ
15 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ (𝐴(,)𝐵))
1614, 15sselid 3981 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ)
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
1817ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 13077 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑑 ∈ ℝ)
2216, 18, 21ltsubaddd 11859 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴) < 𝑑𝑣 < (𝑑 + 𝐴)))
2316rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ*)
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ*)
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
2617ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐴 ∈ ℝ)
2720, 26readdcld 11290 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ)
2827rexrd 11311 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ*)
2928adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑑 + 𝐴) ∈ ℝ*)
30 xrltmin 13224 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3123, 25, 29, 30syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3213, 22, 313bitr4rd 312 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣𝐴) < 𝑑))
3318rexrd 11311 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
3425, 29ifcld 4572 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
3511simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑣)
36 elioo5 13444 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (𝐴 < 𝑣𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
3736baibd 539 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) ∧ 𝐴 < 𝑣) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3833, 34, 23, 35, 37syl31anc 1375 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3918, 16, 35ltled 11409 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴𝑣)
4018, 16, 39abssubge0d 15470 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (abs‘(𝑣𝐴)) = (𝑣𝐴))
4140breq1d 5153 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (𝑣𝐴) < 𝑑))
4232, 38, 413bitr4d 311 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (abs‘(𝑣𝐴)) < 𝑑))
4342rabbi2dva 4226 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑})
4424ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ*)
45 xrmin1 13219 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
4644, 28, 45syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
47 iooss2 13423 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
4844, 46, 47syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
49 sseqin2 4223 . . . . . . . . . . . . . . . . 17 ((𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5048, 49sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5143, 50eqtr3d 2779 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5251eleq2d 2827 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
539, 52bitr3id 285 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
54 lbioo 13418 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 𝐴 ∈ (𝐴(,)𝐵)
55 eleq1 2829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
5654, 55mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐴 → ¬ 𝑦 ∈ (𝐴(,)𝐵))
5756necon2ai 2970 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦𝐴)
5857biantrurd 532 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑)))
5958bicomd 223 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) ↔ (abs‘(𝑦𝐴)) < 𝑑))
60 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑦))
61 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑦))
6260, 61oveq12d 7449 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
63 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
64 ovex 7464 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ V
6562, 63, 64fvmpt3i 7021 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
6665fvoveq1d 7453 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)))
6766breq1d 5153 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2) ↔ (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
6859, 67imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))))
6968ralbiia 3091 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
70 fvoveq1 7454 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → (abs‘(𝑣𝐴)) = (abs‘(𝑦𝐴)))
7170breq1d 5153 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (abs‘(𝑦𝐴)) < 𝑑))
7271ralrab 3699 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7369, 72bitr4i 278 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
7451adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
7574raleqdv 3326 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7617ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ)
7724ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐵 ∈ ℝ*)
78 lhop1.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
7978ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < 𝐵)
80 lhop1.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
82 lhop1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
84 lhop1.if . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
86 lhop1.ig . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
8786ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
88 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
8988ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐹 lim 𝐴))
90 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
9190ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐺 lim 𝐴))
92 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran 𝐺)
9392ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran 𝐺)
94 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran (ℝ D 𝐺))
961ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
973adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
9876rexrd 11311 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ*)
99 simprll 779 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ+)
10099rpred 13077 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ)
101100, 76readdcld 11290 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ)
102 iocssre 13467 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10398, 101, 102syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10477adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐵 ∈ ℝ*)
105100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝑑 ∈ ℝ)
10676adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐴 ∈ ℝ)
107105, 106readdcld 11290 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ)
108107rexrd 11311 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ*)
109104, 108ifclda 4561 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
11076, 99ltaddrp2d 13111 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < (𝑑 + 𝐴))
111101rexrd 11311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ*)
112 xrltmin 13224 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11398, 77, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11479, 110, 113mpbir2and 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))
115 xrmin2 13220 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
11677, 111, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
117 elioc1 13429 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
11898, 111, 117syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
119109, 114, 116, 118mpbir3and 1343 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)))
120103, 119sseldd 3984 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ)
12177, 111, 45syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
122 simprlr 780 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
123 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
124 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (𝐴 + (𝑟 / 2)) = (𝐴 + (𝑟 / 2))
12576, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 120, 121, 122, 123, 124lhop1lem 26052 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < (2 · (𝑥 / 2)))
1262rpcnd 13079 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
127 2cnd 12344 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
128 2ne0 12370 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
129128a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
130126, 127, 129divcan2d 12045 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 / 2)) = 𝑥)
131130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (2 · (𝑥 / 2)) = 𝑥)
132125, 131breqtrd 5169 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)
133132expr 456 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13475, 133sylbid 240 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13573, 134biimtrid 242 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
136135expr 456 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
13753, 136sylbid 240 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
138137expdimp 452 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
139 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐹𝑧) = (𝐹𝑣))
140 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
141139, 140oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ((𝐹𝑧) / (𝐺𝑧)) = ((𝐹𝑣) / (𝐺𝑣)))
142 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
143 ovex 7464 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) / (𝐺𝑧)) ∈ V
144141, 142, 143fvmpt3i 7021 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) = ((𝐹𝑣) / (𝐺𝑣)))
145144fvoveq1d 7453 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) = (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)))
146145breq1d 5153 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥 ↔ (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
147146imbi2d 340 . . . . . . . . . . . 12 (𝑣 ∈ (𝐴(,)𝐵) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
148147adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
149138, 148sylibrd 259 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
150149adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
151150com23 86 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
152151ralrimdva 3154 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∀𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
153152reximdva 3168 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
1548, 153syld 47 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
155154ralrimdva 3154 . . . 4 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
156155anim2d 612 . . 3 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒)) → (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
157 dvf 25942 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
15884feq2d 6722 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
159157, 158mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
160159ffvelcdmda 7104 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
161 dvf 25942 . . . . . . . 8 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
16286feq2d 6722 . . . . . . . 8 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
163161, 162mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
164163ffvelcdmda 7104 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
16594adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
166163ffnd 6737 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
167 fnfvelrn 7100 . . . . . . . . . 10 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
168166, 167sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
169 eleq1 2829 . . . . . . . . 9 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
170168, 169syl5ibcom 245 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
171170necon3bd 2954 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
172165, 171mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
173160, 164, 172divcld 12043 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
174173fmpttd 7135 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))):(𝐴(,)𝐵)⟶ℂ)
175 ax-resscn 11212 . . . . . 6 ℝ ⊆ ℂ
17614, 175sstri 3993 . . . . 5 (𝐴(,)𝐵) ⊆ ℂ
177176a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
17817recnd 11289 . . . 4 (𝜑𝐴 ∈ ℂ)
179174, 177, 178ellimc3 25914 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒))))
18080ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
181180recnd 11289 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
18282ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
183182recnd 11289 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
18492adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
18582ffnd 6737 . . . . . . . . . 10 (𝜑𝐺 Fn (𝐴(,)𝐵))
186 fnfvelrn 7100 . . . . . . . . . 10 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
187185, 186sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
188 eleq1 2829 . . . . . . . . 9 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
189187, 188syl5ibcom 245 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
190189necon3bd 2954 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
191184, 190mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
192181, 183, 191divcld 12043 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
193192fmpttd 7135 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
194193, 177, 178ellimc3 25914 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
195156, 179, 1943imtr4d 294 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴)))
1961, 195mpd 15 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  ifcif 4525   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  +crp 13034  (,)cioo 13387  (,]cioc 13388  abscabs 15273   lim climc 25897   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  lhop2  26054  lhop  26055  fourierdlem61  46182
  Copyright terms: Public domain W3C validator