MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Visualization version   GIF version

Theorem lhop1 25083
Description: L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
Assertion
Ref Expression
lhop1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Distinct variable groups:   𝑧,𝐵   𝜑,𝑧   𝑧,𝐴   𝑧,𝐶   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop1
Dummy variables 𝑒 𝑑 𝑟 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
32rphalfcld 12713 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4 breq2 5074 . . . . . . . . . 10 (𝑒 = (𝑥 / 2) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)))
54imbi2d 340 . . . . . . . . 9 (𝑒 = (𝑥 / 2) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
65rexralbidv 3229 . . . . . . . 8 (𝑒 = (𝑥 / 2) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
76rspcv 3547 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
83, 7syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
9 rabid 3304 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ (𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑))
10 eliooord 13067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑣𝑣 < 𝐵))
1110adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑣𝑣 < 𝐵))
1211simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 < 𝐵)
1312biantrurd 532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < (𝑑 + 𝐴) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
14 ioossre 13069 . . . . . . . . . . . . . . . . . . . . 21 (𝐴(,)𝐵) ⊆ ℝ
15 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ (𝐴(,)𝐵))
1614, 15sselid 3915 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ)
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
1817ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12701 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑑 ∈ ℝ)
2216, 18, 21ltsubaddd 11501 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴) < 𝑑𝑣 < (𝑑 + 𝐴)))
2316rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ*)
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ*)
2524ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
2617ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐴 ∈ ℝ)
2720, 26readdcld 10935 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ)
2827rexrd 10956 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ*)
2928adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑑 + 𝐴) ∈ ℝ*)
30 xrltmin 12845 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3123, 25, 29, 30syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3213, 22, 313bitr4rd 311 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣𝐴) < 𝑑))
3318rexrd 10956 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
3425, 29ifcld 4502 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
3511simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑣)
36 elioo5 13065 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (𝐴 < 𝑣𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
3736baibd 539 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) ∧ 𝐴 < 𝑣) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3833, 34, 23, 35, 37syl31anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3918, 16, 35ltled 11053 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴𝑣)
4018, 16, 39abssubge0d 15071 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (abs‘(𝑣𝐴)) = (𝑣𝐴))
4140breq1d 5080 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (𝑣𝐴) < 𝑑))
4232, 38, 413bitr4d 310 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (abs‘(𝑣𝐴)) < 𝑑))
4342rabbi2dva 4148 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑})
4424ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ*)
45 xrmin1 12840 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
4644, 28, 45syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
47 iooss2 13044 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
4844, 46, 47syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
49 sseqin2 4146 . . . . . . . . . . . . . . . . 17 ((𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5048, 49sylib 217 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5143, 50eqtr3d 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5251eleq2d 2824 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
539, 52bitr3id 284 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
54 lbioo 13039 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 𝐴 ∈ (𝐴(,)𝐵)
55 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
5654, 55mtbiri 326 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐴 → ¬ 𝑦 ∈ (𝐴(,)𝐵))
5756necon2ai 2972 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦𝐴)
5857biantrurd 532 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑)))
5958bicomd 222 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) ↔ (abs‘(𝑦𝐴)) < 𝑑))
60 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑦))
61 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑦))
6260, 61oveq12d 7273 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
63 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
64 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ V
6562, 63, 64fvmpt3i 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
6665fvoveq1d 7277 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)))
6766breq1d 5080 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2) ↔ (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
6859, 67imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))))
6968ralbiia 3089 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
70 fvoveq1 7278 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → (abs‘(𝑣𝐴)) = (abs‘(𝑦𝐴)))
7170breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (abs‘(𝑦𝐴)) < 𝑑))
7271ralrab 3623 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7369, 72bitr4i 277 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
7451adantrr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
7574raleqdv 3339 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7617ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ)
7724ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐵 ∈ ℝ*)
78 lhop1.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
7978ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < 𝐵)
80 lhop1.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
8180ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
82 lhop1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8382ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
84 lhop1.if . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8584ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
86 lhop1.ig . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
8786ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
88 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
8988ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐹 lim 𝐴))
90 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
9190ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐺 lim 𝐴))
92 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran 𝐺)
9392ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran 𝐺)
94 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
9594ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran (ℝ D 𝐺))
961ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
973adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
9876rexrd 10956 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ*)
99 simprll 775 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ+)
10099rpred 12701 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ)
101100, 76readdcld 10935 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ)
102 iocssre 13088 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10398, 101, 102syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10477adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐵 ∈ ℝ*)
105100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝑑 ∈ ℝ)
10676adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐴 ∈ ℝ)
107105, 106readdcld 10935 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ)
108107rexrd 10956 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ*)
109104, 108ifclda 4491 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
11076, 99ltaddrp2d 12735 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < (𝑑 + 𝐴))
111101rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ*)
112 xrltmin 12845 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11398, 77, 111, 112syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11479, 110, 113mpbir2and 709 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))
115 xrmin2 12841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
11677, 111, 115syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
117 elioc1 13050 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
11898, 111, 117syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
119109, 114, 116, 118mpbir3and 1340 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)))
120103, 119sseldd 3918 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ)
12177, 111, 45syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
122 simprlr 776 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
123 simprr 769 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
124 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝐴 + (𝑟 / 2)) = (𝐴 + (𝑟 / 2))
12576, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 120, 121, 122, 123, 124lhop1lem 25082 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < (2 · (𝑥 / 2)))
1262rpcnd 12703 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
127 2cnd 11981 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
128 2ne0 12007 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
129128a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
130126, 127, 129divcan2d 11683 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 / 2)) = 𝑥)
131130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (2 · (𝑥 / 2)) = 𝑥)
132125, 131breqtrd 5096 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)
133132expr 456 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13475, 133sylbid 239 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13573, 134syl5bi 241 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
136135expr 456 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
13753, 136sylbid 239 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
138137expdimp 452 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
139 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐹𝑧) = (𝐹𝑣))
140 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
141139, 140oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ((𝐹𝑧) / (𝐺𝑧)) = ((𝐹𝑣) / (𝐺𝑣)))
142 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
143 ovex 7288 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) / (𝐺𝑧)) ∈ V
144141, 142, 143fvmpt3i 6862 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) = ((𝐹𝑣) / (𝐺𝑣)))
145144fvoveq1d 7277 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) = (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)))
146145breq1d 5080 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥 ↔ (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
147146imbi2d 340 . . . . . . . . . . . 12 (𝑣 ∈ (𝐴(,)𝐵) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
148147adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
149138, 148sylibrd 258 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
150149adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
151150com23 86 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
152151ralrimdva 3112 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∀𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
153152reximdva 3202 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
1548, 153syld 47 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
155154ralrimdva 3112 . . . 4 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
156155anim2d 611 . . 3 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒)) → (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
157 dvf 24976 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
15884feq2d 6570 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
159157, 158mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
160159ffvelrnda 6943 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
161 dvf 24976 . . . . . . . 8 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
16286feq2d 6570 . . . . . . . 8 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
163161, 162mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
164163ffvelrnda 6943 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
16594adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
166163ffnd 6585 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
167 fnfvelrn 6940 . . . . . . . . . 10 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
168166, 167sylan 579 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
169 eleq1 2826 . . . . . . . . 9 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
170168, 169syl5ibcom 244 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
171170necon3bd 2956 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
172165, 171mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
173160, 164, 172divcld 11681 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
174173fmpttd 6971 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))):(𝐴(,)𝐵)⟶ℂ)
175 ax-resscn 10859 . . . . . 6 ℝ ⊆ ℂ
17614, 175sstri 3926 . . . . 5 (𝐴(,)𝐵) ⊆ ℂ
177176a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
17817recnd 10934 . . . 4 (𝜑𝐴 ∈ ℂ)
179174, 177, 178ellimc3 24948 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒))))
18080ffvelrnda 6943 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
181180recnd 10934 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
18282ffvelrnda 6943 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
183182recnd 10934 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
18492adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
18582ffnd 6585 . . . . . . . . . 10 (𝜑𝐺 Fn (𝐴(,)𝐵))
186 fnfvelrn 6940 . . . . . . . . . 10 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
187185, 186sylan 579 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
188 eleq1 2826 . . . . . . . . 9 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
189187, 188syl5ibcom 244 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
190189necon3bd 2956 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
191184, 190mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
192181, 183, 191divcld 11681 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
193192fmpttd 6971 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
194193, 177, 178ellimc3 24948 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
195156, 179, 1943imtr4d 293 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴)))
1961, 195mpd 15 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  (,]cioc 13009  abscabs 14873   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  lhop2  25084  lhop  25085  fourierdlem61  43598
  Copyright terms: Public domain W3C validator