MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Visualization version   GIF version

Theorem lhop1 25926
Description: L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
Assertion
Ref Expression
lhop1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Distinct variable groups:   𝑧,𝐵   𝜑,𝑧   𝑧,𝐴   𝑧,𝐶   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop1
Dummy variables 𝑒 𝑑 𝑟 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
32rphalfcld 13014 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4 breq2 5114 . . . . . . . . . 10 (𝑒 = (𝑥 / 2) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)))
54imbi2d 340 . . . . . . . . 9 (𝑒 = (𝑥 / 2) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
65rexralbidv 3204 . . . . . . . 8 (𝑒 = (𝑥 / 2) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
76rspcv 3587 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
83, 7syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
9 rabid 3430 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ (𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑))
10 eliooord 13373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑣𝑣 < 𝐵))
1110adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑣𝑣 < 𝐵))
1211simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 < 𝐵)
1312biantrurd 532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < (𝑑 + 𝐴) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
14 ioossre 13375 . . . . . . . . . . . . . . . . . . . . 21 (𝐴(,)𝐵) ⊆ ℝ
15 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ (𝐴(,)𝐵))
1614, 15sselid 3947 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ)
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
1817ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
19 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 13002 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑑 ∈ ℝ)
2216, 18, 21ltsubaddd 11781 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴) < 𝑑𝑣 < (𝑑 + 𝐴)))
2316rexrd 11231 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ*)
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ*)
2524ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
2617ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐴 ∈ ℝ)
2720, 26readdcld 11210 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ)
2827rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ*)
2928adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑑 + 𝐴) ∈ ℝ*)
30 xrltmin 13149 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3123, 25, 29, 30syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3213, 22, 313bitr4rd 312 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣𝐴) < 𝑑))
3318rexrd 11231 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
3425, 29ifcld 4538 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
3511simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑣)
36 elioo5 13371 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (𝐴 < 𝑣𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
3736baibd 539 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) ∧ 𝐴 < 𝑣) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3833, 34, 23, 35, 37syl31anc 1375 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3918, 16, 35ltled 11329 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴𝑣)
4018, 16, 39abssubge0d 15407 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (abs‘(𝑣𝐴)) = (𝑣𝐴))
4140breq1d 5120 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (𝑣𝐴) < 𝑑))
4232, 38, 413bitr4d 311 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (abs‘(𝑣𝐴)) < 𝑑))
4342rabbi2dva 4192 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑})
4424ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ*)
45 xrmin1 13144 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
4644, 28, 45syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
47 iooss2 13349 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
4844, 46, 47syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
49 sseqin2 4189 . . . . . . . . . . . . . . . . 17 ((𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5048, 49sylib 218 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5143, 50eqtr3d 2767 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5251eleq2d 2815 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
539, 52bitr3id 285 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
54 lbioo 13344 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 𝐴 ∈ (𝐴(,)𝐵)
55 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
5654, 55mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐴 → ¬ 𝑦 ∈ (𝐴(,)𝐵))
5756necon2ai 2955 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦𝐴)
5857biantrurd 532 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑)))
5958bicomd 223 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) ↔ (abs‘(𝑦𝐴)) < 𝑑))
60 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑦))
61 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑦))
6260, 61oveq12d 7408 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
63 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
64 ovex 7423 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ V
6562, 63, 64fvmpt3i 6976 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
6665fvoveq1d 7412 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)))
6766breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2) ↔ (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
6859, 67imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))))
6968ralbiia 3074 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
70 fvoveq1 7413 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → (abs‘(𝑣𝐴)) = (abs‘(𝑦𝐴)))
7170breq1d 5120 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (abs‘(𝑦𝐴)) < 𝑑))
7271ralrab 3668 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7369, 72bitr4i 278 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
7451adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
7574raleqdv 3301 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7617ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ)
7724ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐵 ∈ ℝ*)
78 lhop1.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
7978ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < 𝐵)
80 lhop1.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
8180ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
82 lhop1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8382ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
84 lhop1.if . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8584ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
86 lhop1.ig . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
8786ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
88 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
8988ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐹 lim 𝐴))
90 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
9190ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐺 lim 𝐴))
92 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran 𝐺)
9392ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran 𝐺)
94 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
9594ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran (ℝ D 𝐺))
961ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
973adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
9876rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ*)
99 simprll 778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ+)
10099rpred 13002 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ)
101100, 76readdcld 11210 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ)
102 iocssre 13395 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10398, 101, 102syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10477adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐵 ∈ ℝ*)
105100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝑑 ∈ ℝ)
10676adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐴 ∈ ℝ)
107105, 106readdcld 11210 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ)
108107rexrd 11231 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ*)
109104, 108ifclda 4527 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
11076, 99ltaddrp2d 13036 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < (𝑑 + 𝐴))
111101rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ*)
112 xrltmin 13149 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11398, 77, 111, 112syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11479, 110, 113mpbir2and 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))
115 xrmin2 13145 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
11677, 111, 115syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
117 elioc1 13355 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
11898, 111, 117syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
119109, 114, 116, 118mpbir3and 1343 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)))
120103, 119sseldd 3950 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ)
12177, 111, 45syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
122 simprlr 779 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
123 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
124 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝐴 + (𝑟 / 2)) = (𝐴 + (𝑟 / 2))
12576, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 120, 121, 122, 123, 124lhop1lem 25925 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < (2 · (𝑥 / 2)))
1262rpcnd 13004 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
127 2cnd 12271 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
128 2ne0 12297 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
129128a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
130126, 127, 129divcan2d 11967 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 / 2)) = 𝑥)
131130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (2 · (𝑥 / 2)) = 𝑥)
132125, 131breqtrd 5136 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)
133132expr 456 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13475, 133sylbid 240 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13573, 134biimtrid 242 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
136135expr 456 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
13753, 136sylbid 240 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
138137expdimp 452 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
139 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐹𝑧) = (𝐹𝑣))
140 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
141139, 140oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ((𝐹𝑧) / (𝐺𝑧)) = ((𝐹𝑣) / (𝐺𝑣)))
142 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
143 ovex 7423 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) / (𝐺𝑧)) ∈ V
144141, 142, 143fvmpt3i 6976 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) = ((𝐹𝑣) / (𝐺𝑣)))
145144fvoveq1d 7412 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) = (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)))
146145breq1d 5120 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥 ↔ (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
147146imbi2d 340 . . . . . . . . . . . 12 (𝑣 ∈ (𝐴(,)𝐵) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
148147adantl 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
149138, 148sylibrd 259 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
150149adantld 490 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
151150com23 86 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
152151ralrimdva 3134 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∀𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
153152reximdva 3147 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
1548, 153syld 47 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
155154ralrimdva 3134 . . . 4 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
156155anim2d 612 . . 3 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒)) → (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
157 dvf 25815 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
15884feq2d 6675 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
159157, 158mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
160159ffvelcdmda 7059 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
161 dvf 25815 . . . . . . . 8 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
16286feq2d 6675 . . . . . . . 8 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
163161, 162mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
164163ffvelcdmda 7059 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
16594adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
166163ffnd 6692 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
167 fnfvelrn 7055 . . . . . . . . . 10 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
168166, 167sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
169 eleq1 2817 . . . . . . . . 9 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
170168, 169syl5ibcom 245 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
171170necon3bd 2940 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
172165, 171mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
173160, 164, 172divcld 11965 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
174173fmpttd 7090 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))):(𝐴(,)𝐵)⟶ℂ)
175 ax-resscn 11132 . . . . . 6 ℝ ⊆ ℂ
17614, 175sstri 3959 . . . . 5 (𝐴(,)𝐵) ⊆ ℂ
177176a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
17817recnd 11209 . . . 4 (𝜑𝐴 ∈ ℂ)
179174, 177, 178ellimc3 25787 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒))))
18080ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
181180recnd 11209 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
18282ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
183182recnd 11209 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
18492adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
18582ffnd 6692 . . . . . . . . . 10 (𝜑𝐺 Fn (𝐴(,)𝐵))
186 fnfvelrn 7055 . . . . . . . . . 10 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
187185, 186sylan 580 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
188 eleq1 2817 . . . . . . . . 9 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
189187, 188syl5ibcom 245 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
190189necon3bd 2940 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
191184, 190mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
192181, 183, 191divcld 11965 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
193192fmpttd 7090 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
194193, 177, 178ellimc3 25787 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
195156, 179, 1943imtr4d 294 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴)))
1961, 195mpd 15 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  (,]cioc 13314  abscabs 15207   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  lhop2  25927  lhop  25928  fourierdlem61  46172
  Copyright terms: Public domain W3C validator