MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lhop1 Structured version   Visualization version   GIF version

Theorem lhop1 24617
Description: L'Hôpital's Rule for limits from the right. If 𝐹 and 𝐺 are differentiable real functions on (𝐴, 𝐵), and 𝐹 and 𝐺 both approach 0 at 𝐴, and 𝐺(𝑥) and 𝐺' (𝑥) are not zero on (𝐴, 𝐵), and the limit of 𝐹' (𝑥) / 𝐺' (𝑥) at 𝐴 is 𝐶, then the limit 𝐹(𝑥) / 𝐺(𝑥) at 𝐴 also exists and equals 𝐶. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
lhop1.a (𝜑𝐴 ∈ ℝ)
lhop1.b (𝜑𝐵 ∈ ℝ*)
lhop1.l (𝜑𝐴 < 𝐵)
lhop1.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
lhop1.g (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
lhop1.if (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
lhop1.ig (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
lhop1.f0 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
lhop1.g0 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
lhop1.gn0 (𝜑 → ¬ 0 ∈ ran 𝐺)
lhop1.gd0 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
lhop1.c (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
Assertion
Ref Expression
lhop1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Distinct variable groups:   𝑧,𝐵   𝜑,𝑧   𝑧,𝐴   𝑧,𝐶   𝑧,𝐹   𝑧,𝐺

Proof of Theorem lhop1
Dummy variables 𝑒 𝑑 𝑟 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lhop1.c . 2 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
2 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
32rphalfcld 12431 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4 breq2 5034 . . . . . . . . . 10 (𝑒 = (𝑥 / 2) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒 ↔ (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)))
54imbi2d 344 . . . . . . . . 9 (𝑒 = (𝑥 / 2) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
65rexralbidv 3260 . . . . . . . 8 (𝑒 = (𝑥 / 2) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
76rspcv 3566 . . . . . . 7 ((𝑥 / 2) ∈ ℝ+ → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
83, 7syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2))))
9 rabid 3331 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ (𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑))
10 eliooord 12784 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑣𝑣 < 𝐵))
1110adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝐴 < 𝑣𝑣 < 𝐵))
1211simprd 499 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 < 𝐵)
1312biantrurd 536 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < (𝑑 + 𝐴) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
14 ioossre 12786 . . . . . . . . . . . . . . . . . . . . 21 (𝐴(,)𝐵) ⊆ ℝ
15 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ (𝐴(,)𝐵))
1614, 15sseldi 3913 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ)
17 lhop1.a . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ ℝ)
1817ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
19 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12419 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑑 ∈ ℝ)
2216, 18, 21ltsubaddd 11225 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴) < 𝑑𝑣 < (𝑑 + 𝐴)))
2316rexrd 10680 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝑣 ∈ ℝ*)
24 lhop1.b . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵 ∈ ℝ*)
2524ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
2617ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐴 ∈ ℝ)
2720, 26readdcld 10659 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ)
2827rexrd 10680 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑 + 𝐴) ∈ ℝ*)
2928adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑑 + 𝐴) ∈ ℝ*)
30 xrltmin 12563 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3123, 25, 29, 30syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣 < 𝐵𝑣 < (𝑑 + 𝐴))))
3213, 22, 313bitr4rd 315 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝑣𝐴) < 𝑑))
3318rexrd 10680 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
3425, 29ifcld 4470 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
3511simpld 498 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑣)
36 elioo5 12782 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (𝐴 < 𝑣𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
3736baibd 543 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝑣 ∈ ℝ*) ∧ 𝐴 < 𝑣) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3833, 34, 23, 35, 37syl31anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ 𝑣 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
3918, 16, 35ltled 10777 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → 𝐴𝑣)
4018, 16, 39abssubge0d 14783 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (abs‘(𝑣𝐴)) = (𝑣𝐴))
4140breq1d 5040 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (𝑣𝐴) < 𝑑))
4232, 38, 413bitr4d 314 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ↔ (abs‘(𝑣𝐴)) < 𝑑))
4342rabbi2dva 4144 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑})
4424ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ*)
45 xrmin1 12558 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
4644, 28, 45syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
47 iooss2 12762 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ* ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
4844, 46, 47syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵))
49 sseqin2 4142 . . . . . . . . . . . . . . . . 17 ((𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) ⊆ (𝐴(,)𝐵) ↔ ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5048, 49sylib 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐴(,)𝐵) ∩ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5143, 50eqtr3d 2835 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
5251eleq2d 2875 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
539, 52bitr3id 288 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) ↔ 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))))
54 lbioo 12757 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 𝐴 ∈ (𝐴(,)𝐵)
55 eleq1 2877 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝐴 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
5654, 55mtbiri 330 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐴 → ¬ 𝑦 ∈ (𝐴(,)𝐵))
5756necon2ai 3016 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → 𝑦𝐴)
5857biantrurd 536 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(𝑦𝐴)) < 𝑑 ↔ (𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑)))
5958bicomd 226 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) ↔ (abs‘(𝑦𝐴)) < 𝑑))
60 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑦))
61 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((ℝ D 𝐺)‘𝑧) = ((ℝ D 𝐺)‘𝑦))
6260, 61oveq12d 7153 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
63 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))
64 ovex 7168 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ V
6562, 63, 64fvmpt3i 6750 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) = (((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)))
6665fvoveq1d 7157 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) = (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)))
6766breq1d 5040 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2) ↔ (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
6859, 67imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴(,)𝐵) → (((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))))
6968ralbiia 3132 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
70 fvoveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑦 → (abs‘(𝑣𝐴)) = (abs‘(𝑦𝐴)))
7170breq1d 5040 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑦 → ((abs‘(𝑣𝐴)) < 𝑑 ↔ (abs‘(𝑦𝐴)) < 𝑑))
7271ralrab 3633 . . . . . . . . . . . . . . . 16 (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)𝐵)((abs‘(𝑦𝐴)) < 𝑑 → (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7369, 72bitr4i 281 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) ↔ ∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
7451adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} = (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
7574raleqdv 3364 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) ↔ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2)))
7617ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ)
7724ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐵 ∈ ℝ*)
78 lhop1.l . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 < 𝐵)
7978ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < 𝐵)
80 lhop1.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
8180ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
82 lhop1.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8382ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐺:(𝐴(,)𝐵)⟶ℝ)
84 lhop1.if . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
8584ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
86 lhop1.ig . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
8786ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
88 lhop1.f0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐹 lim 𝐴))
8988ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐹 lim 𝐴))
90 lhop1.g0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ∈ (𝐺 lim 𝐴))
9190ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 0 ∈ (𝐺 lim 𝐴))
92 lhop1.gn0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran 𝐺)
9392ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran 𝐺)
94 lhop1.gd0 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐺))
9594ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ¬ 0 ∈ ran (ℝ D 𝐺))
961ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴))
973adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑥 / 2) ∈ ℝ+)
9876rexrd 10680 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 ∈ ℝ*)
99 simprll 778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ+)
10099rpred 12419 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑑 ∈ ℝ)
101100, 76readdcld 10659 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ)
102 iocssre 12805 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10398, 101, 102syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴(,](𝑑 + 𝐴)) ⊆ ℝ)
10477adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐵 ∈ ℝ*)
105100adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝑑 ∈ ℝ)
10676adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → 𝐴 ∈ ℝ)
107105, 106readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ)
108107rexrd 10680 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) ∧ ¬ 𝐵 ≤ (𝑑 + 𝐴)) → (𝑑 + 𝐴) ∈ ℝ*)
109104, 108ifclda 4459 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*)
11076, 99ltaddrp2d 12453 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < (𝑑 + 𝐴))
111101rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝑑 + 𝐴) ∈ ℝ*)
112 xrltmin 12563 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11398, 77, 111, 112syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ↔ (𝐴 < 𝐵𝐴 < (𝑑 + 𝐴))))
11479, 110, 113mpbir2and 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))
115 xrmin2 12559 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
11677, 111, 115syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))
117 elioc1 12768 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ* ∧ (𝑑 + 𝐴) ∈ ℝ*) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
11898, 111, 117syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)) ↔ (if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ*𝐴 < if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∧ if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ (𝑑 + 𝐴))))
119109, 114, 116, 118mpbir3and 1339 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ (𝐴(,](𝑑 + 𝐴)))
120103, 119sseldd 3916 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ∈ ℝ)
12177, 111, 45syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)) ≤ 𝐵)
122 simprlr 779 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → 𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))
123 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))
124 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (𝐴 + (𝑟 / 2)) = (𝐴 + (𝑟 / 2))
12576, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 96, 97, 120, 121, 122, 123, 124lhop1lem 24616 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < (2 · (𝑥 / 2)))
1262rpcnd 12421 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
127 2cnd 11703 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
128 2ne0 11729 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
129128a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ ℝ+) → 2 ≠ 0)
130126, 127, 129divcan2d 11407 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ℝ+) → (2 · (𝑥 / 2)) = 𝑥)
131130adantr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (2 · (𝑥 / 2)) = 𝑥)
132125, 131breqtrd 5056 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ ((𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))) ∧ ∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2))) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)
133132expr 460 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴)))(abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13475, 133sylbid 243 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ {𝑣 ∈ (𝐴(,)𝐵) ∣ (abs‘(𝑣𝐴)) < 𝑑} (abs‘((((ℝ D 𝐹)‘𝑦) / ((ℝ D 𝐺)‘𝑦)) − 𝐶)) < (𝑥 / 2) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
13573, 134syl5bi 245 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
136135expr 460 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑣 ∈ (𝐴(,)if(𝐵 ≤ (𝑑 + 𝐴), 𝐵, (𝑑 + 𝐴))) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
13753, 136sylbid 243 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝑣 ∈ (𝐴(,)𝐵) ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
138137expdimp 456 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
139 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐹𝑧) = (𝐹𝑣))
140 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑣 → (𝐺𝑧) = (𝐺𝑣))
141139, 140oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → ((𝐹𝑧) / (𝐺𝑧)) = ((𝐹𝑣) / (𝐺𝑣)))
142 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))
143 ovex 7168 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) / (𝐺𝑧)) ∈ V
144141, 142, 143fvmpt3i 6750 . . . . . . . . . . . . . . 15 (𝑣 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) = ((𝐹𝑣) / (𝐺𝑣)))
145144fvoveq1d 7157 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐴(,)𝐵) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) = (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)))
146145breq1d 5040 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐴(,)𝐵) → ((abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥 ↔ (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥))
147146imbi2d 344 . . . . . . . . . . . 12 (𝑣 ∈ (𝐴(,)𝐵) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
148147adantl 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥) ↔ (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝐹𝑣) / (𝐺𝑣)) − 𝐶)) < 𝑥)))
149138, 148sylibrd 262 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((abs‘(𝑣𝐴)) < 𝑑 → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
150149adantld 494 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
151150com23 86 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑣 ∈ (𝐴(,)𝐵)) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
152151ralrimdva 3154 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∀𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
153152reximdva 3233 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < (𝑥 / 2)) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
1548, 153syld 47 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
155154ralrimdva 3154 . . . 4 (𝜑 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒) → ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥)))
156155anim2d 614 . . 3 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒)) → (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
157 dvf 24510 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
15884feq2d 6473 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
159157, 158mpbii 236 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
160159ffvelrnda 6828 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑧) ∈ ℂ)
161 dvf 24510 . . . . . . . 8 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
16286feq2d 6473 . . . . . . . 8 (𝜑 → ((ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ ↔ (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ))
163161, 162mpbii 236 . . . . . . 7 (𝜑 → (ℝ D 𝐺):(𝐴(,)𝐵)⟶ℂ)
164163ffvelrnda 6828 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ℂ)
16594adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran (ℝ D 𝐺))
166163ffnd 6488 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
167 fnfvelrn 6825 . . . . . . . . . 10 (((ℝ D 𝐺) Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
168166, 167sylan 583 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺))
169 eleq1 2877 . . . . . . . . 9 (((ℝ D 𝐺)‘𝑧) = 0 → (((ℝ D 𝐺)‘𝑧) ∈ ran (ℝ D 𝐺) ↔ 0 ∈ ran (ℝ D 𝐺)))
170168, 169syl5ibcom 248 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐺)‘𝑧) = 0 → 0 ∈ ran (ℝ D 𝐺)))
171170necon3bd 3001 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran (ℝ D 𝐺) → ((ℝ D 𝐺)‘𝑧) ≠ 0))
172165, 171mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑧) ≠ 0)
173160, 164, 172divcld 11405 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)) ∈ ℂ)
174173fmpttd 6856 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))):(𝐴(,)𝐵)⟶ℂ)
175 ax-resscn 10583 . . . . . 6 ℝ ⊆ ℂ
17614, 175sstri 3924 . . . . 5 (𝐴(,)𝐵) ⊆ ℂ
177176a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
17817recnd 10658 . . . 4 (𝜑𝐴 ∈ ℂ)
179174, 177, 178ellimc3 24482 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦 ∈ (𝐴(,)𝐵)((𝑦𝐴 ∧ (abs‘(𝑦𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧)))‘𝑦) − 𝐶)) < 𝑒))))
18080ffvelrnda 6828 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℝ)
181180recnd 10658 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
18282ffvelrnda 6828 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℝ)
183182recnd 10658 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
18492adantr 484 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ¬ 0 ∈ ran 𝐺)
18582ffnd 6488 . . . . . . . . . 10 (𝜑𝐺 Fn (𝐴(,)𝐵))
186 fnfvelrn 6825 . . . . . . . . . 10 ((𝐺 Fn (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
187185, 186sylan 583 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ran 𝐺)
188 eleq1 2877 . . . . . . . . 9 ((𝐺𝑧) = 0 → ((𝐺𝑧) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺))
189187, 188syl5ibcom 248 . . . . . . . 8 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) = 0 → 0 ∈ ran 𝐺))
190189necon3bd 3001 . . . . . . 7 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (¬ 0 ∈ ran 𝐺 → (𝐺𝑧) ≠ 0))
191184, 190mpd 15 . . . . . 6 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ≠ 0)
192181, 183, 191divcld 11405 . . . . 5 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) / (𝐺𝑧)) ∈ ℂ)
193192fmpttd 6856 . . . 4 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))):(𝐴(,)𝐵)⟶ℂ)
194193, 177, 178ellimc3 24482 . . 3 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑑 ∈ ℝ+𝑣 ∈ (𝐴(,)𝐵)((𝑣𝐴 ∧ (abs‘(𝑣𝐴)) < 𝑑) → (abs‘(((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧)))‘𝑣) − 𝐶)) < 𝑥))))
195156, 179, 1943imtr4d 297 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ (((ℝ D 𝐹)‘𝑧) / ((ℝ D 𝐺)‘𝑧))) lim 𝐴) → 𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴)))
1961, 195mpd 15 1 (𝜑𝐶 ∈ ((𝑧 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑧) / (𝐺𝑧))) lim 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  cin 3880  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  (,]cioc 12727  abscabs 14585   lim climc 24465   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  lhop2  24618  lhop  24619  fourierdlem61  42809
  Copyright terms: Public domain W3C validator