| Step | Hyp | Ref
| Expression |
| 1 | | difss 4136 |
. . . . 5
⊢ (𝐹 ∖ 𝐺) ⊆ 𝐹 |
| 2 | | dmss 5913 |
. . . . 5
⊢ ((𝐹 ∖ 𝐺) ⊆ 𝐹 → dom (𝐹 ∖ 𝐺) ⊆ dom 𝐹) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ dom
(𝐹 ∖ 𝐺) ⊆ dom 𝐹 |
| 4 | | fndm 6671 |
. . . . 5
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 5 | 4 | adantr 480 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrid 4026 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) ⊆ 𝐴) |
| 7 | | sseqin2 4223 |
. . 3
⊢ (dom
(𝐹 ∖ 𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) |
| 8 | 6, 7 | sylib 218 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = dom (𝐹 ∖ 𝐺)) |
| 9 | | vex 3484 |
. . . . 5
⊢ 𝑥 ∈ V |
| 10 | 9 | eldm 5911 |
. . . 4
⊢ (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦) |
| 11 | | eqcom 2744 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐺‘𝑥) = (𝐹‘𝑥)) |
| 12 | | fnbrfvb 6959 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐹‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
| 13 | 11, 12 | bitrid 283 |
. . . . . . . 8
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
| 14 | 13 | adantll 714 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ 𝑥𝐺(𝐹‘𝑥))) |
| 15 | 14 | necon3abid 2977 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
| 16 | | fvex 6919 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
| 17 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥𝐺𝑦 ↔ 𝑥𝐺(𝐹‘𝑥))) |
| 18 | 17 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹‘𝑥))) |
| 19 | 16, 18 | ceqsexv 3532 |
. . . . . 6
⊢
(∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹‘𝑥)) |
| 20 | 15, 19 | bitr4di 289 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ (𝐺‘𝑥) ↔ ∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦))) |
| 21 | | eqcom 2744 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) |
| 22 | | fnbrfvb 6959 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
| 23 | 21, 22 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 24 | 23 | adantlr 715 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 25 | 24 | anbi1d 631 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))) |
| 26 | | brdif 5196 |
. . . . . . 7
⊢ (𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)) |
| 27 | 25, 26 | bitr4di 289 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹 ∖ 𝐺)𝑦)) |
| 28 | 27 | exbidv 1921 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑦 = (𝐹‘𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦)) |
| 29 | 20, 28 | bitr2d 280 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 𝑥(𝐹 ∖ 𝐺)𝑦 ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
| 30 | 10, 29 | bitrid 283 |
. . 3
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom (𝐹 ∖ 𝐺) ↔ (𝐹‘𝑥) ≠ (𝐺‘𝑥))) |
| 31 | 30 | rabbi2dva 4226 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹 ∖ 𝐺)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) |
| 32 | 8, 31 | eqtr3d 2779 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∖ 𝐺) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ≠ (𝐺‘𝑥)}) |