MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdif Structured version   Visualization version   GIF version

Theorem fndmdif 6919
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difss 4066 . . . . 5 (𝐹𝐺) ⊆ 𝐹
2 dmss 5811 . . . . 5 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
31, 2ax-mp 5 . . . 4 dom (𝐹𝐺) ⊆ dom 𝐹
4 fndm 6536 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54adantr 481 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
63, 5sseqtrid 3973 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
7 sseqin2 4149 . . 3 (dom (𝐹𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
86, 7sylib 217 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
9 vex 3436 . . . . 5 𝑥 ∈ V
109eldm 5809 . . . 4 (𝑥 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦)
11 eqcom 2745 . . . . . . . . 9 ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐺𝑥) = (𝐹𝑥))
12 fnbrfvb 6822 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1311, 12bitrid 282 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1413adantll 711 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1514necon3abid 2980 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
16 fvex 6787 . . . . . . 7 (𝐹𝑥) ∈ V
17 breq2 5078 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐺𝑦𝑥𝐺(𝐹𝑥)))
1817notbid 318 . . . . . . 7 (𝑦 = (𝐹𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹𝑥)))
1916, 18ceqsexv 3479 . . . . . 6 (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥))
2015, 19bitr4di 289 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦)))
21 eqcom 2745 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
22 fnbrfvb 6822 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2321, 22bitrid 282 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2423adantlr 712 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2524anbi1d 630 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)))
26 brdif 5127 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))
2725, 26bitr4di 289 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹𝐺)𝑦))
2827exbidv 1924 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦))
2920, 28bitr2d 279 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3010, 29bitrid 282 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹𝐺) ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3130rabbi2dva 4151 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
328, 31eqtr3d 2780 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  {crab 3068  cdif 3884  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5589   Fn wfn 6428  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fndmdifcom  6920  fndmdifeq0  6921  fndifnfp  7048  wemapsolem  9309  wemapso2lem  9311  dsmmbas2  20944  frlmbas  20962  ptcmplem2  23204
  Copyright terms: Public domain W3C validator