MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdif Structured version   Visualization version   GIF version

Theorem fndmdif 7014
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difss 4099 . . . . 5 (𝐹𝐺) ⊆ 𝐹
2 dmss 5866 . . . . 5 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
31, 2ax-mp 5 . . . 4 dom (𝐹𝐺) ⊆ dom 𝐹
4 fndm 6621 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
63, 5sseqtrid 3989 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
7 sseqin2 4186 . . 3 (dom (𝐹𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
86, 7sylib 218 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
9 vex 3451 . . . . 5 𝑥 ∈ V
109eldm 5864 . . . 4 (𝑥 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦)
11 eqcom 2736 . . . . . . . . 9 ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐺𝑥) = (𝐹𝑥))
12 fnbrfvb 6911 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1311, 12bitrid 283 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1413adantll 714 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1514necon3abid 2961 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
16 fvex 6871 . . . . . . 7 (𝐹𝑥) ∈ V
17 breq2 5111 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐺𝑦𝑥𝐺(𝐹𝑥)))
1817notbid 318 . . . . . . 7 (𝑦 = (𝐹𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹𝑥)))
1916, 18ceqsexv 3498 . . . . . 6 (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥))
2015, 19bitr4di 289 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦)))
21 eqcom 2736 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
22 fnbrfvb 6911 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2321, 22bitrid 283 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2423adantlr 715 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2524anbi1d 631 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)))
26 brdif 5160 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))
2725, 26bitr4di 289 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹𝐺)𝑦))
2827exbidv 1921 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦))
2920, 28bitr2d 280 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3010, 29bitrid 283 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹𝐺) ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3130rabbi2dva 4189 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
328, 31eqtr3d 2766 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  {crab 3405  cdif 3911  cin 3913  wss 3914   class class class wbr 5107  dom cdm 5638   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  fndmdifcom  7015  fndmdifeq0  7016  fndifnfp  7150  wemapsolem  9503  wemapso2lem  9505  dsmmbas2  21646  frlmbas  21664  ptcmplem2  23940
  Copyright terms: Public domain W3C validator