MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdif Structured version   Visualization version   GIF version

Theorem fndmdif 7062
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difss 4136 . . . . 5 (𝐹𝐺) ⊆ 𝐹
2 dmss 5913 . . . . 5 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
31, 2ax-mp 5 . . . 4 dom (𝐹𝐺) ⊆ dom 𝐹
4 fndm 6671 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54adantr 480 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
63, 5sseqtrid 4026 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
7 sseqin2 4223 . . 3 (dom (𝐹𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
86, 7sylib 218 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
9 vex 3484 . . . . 5 𝑥 ∈ V
109eldm 5911 . . . 4 (𝑥 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦)
11 eqcom 2744 . . . . . . . . 9 ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐺𝑥) = (𝐹𝑥))
12 fnbrfvb 6959 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1311, 12bitrid 283 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1413adantll 714 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1514necon3abid 2977 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
16 fvex 6919 . . . . . . 7 (𝐹𝑥) ∈ V
17 breq2 5147 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐺𝑦𝑥𝐺(𝐹𝑥)))
1817notbid 318 . . . . . . 7 (𝑦 = (𝐹𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹𝑥)))
1916, 18ceqsexv 3532 . . . . . 6 (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥))
2015, 19bitr4di 289 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦)))
21 eqcom 2744 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
22 fnbrfvb 6959 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2321, 22bitrid 283 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2423adantlr 715 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2524anbi1d 631 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)))
26 brdif 5196 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))
2725, 26bitr4di 289 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹𝐺)𝑦))
2827exbidv 1921 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦))
2920, 28bitr2d 280 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3010, 29bitrid 283 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹𝐺) ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3130rabbi2dva 4226 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
328, 31eqtr3d 2779 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  {crab 3436  cdif 3948  cin 3950  wss 3951   class class class wbr 5143  dom cdm 5685   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  fndmdifcom  7063  fndmdifeq0  7064  fndifnfp  7196  wemapsolem  9590  wemapso2lem  9592  dsmmbas2  21757  frlmbas  21775  ptcmplem2  24061
  Copyright terms: Public domain W3C validator