Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmdif Structured version   Visualization version   GIF version

Theorem fndmdif 6808
 Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐴

Proof of Theorem fndmdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 difss 4112 . . . . 5 (𝐹𝐺) ⊆ 𝐹
2 dmss 5770 . . . . 5 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
31, 2ax-mp 5 . . . 4 dom (𝐹𝐺) ⊆ dom 𝐹
4 fndm 6452 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54adantr 481 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
63, 5sseqtrid 4023 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
7 sseqin2 4196 . . 3 (dom (𝐹𝐺) ⊆ 𝐴 ↔ (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
86, 7sylib 219 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = dom (𝐹𝐺))
9 vex 3503 . . . . 5 𝑥 ∈ V
109eldm 5768 . . . 4 (𝑥 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦)
11 eqcom 2833 . . . . . . . . 9 ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐺𝑥) = (𝐹𝑥))
12 fnbrfvb 6715 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1311, 12syl5bb 284 . . . . . . . 8 ((𝐺 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1413adantll 710 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) = (𝐺𝑥) ↔ 𝑥𝐺(𝐹𝑥)))
1514necon3abid 3057 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ¬ 𝑥𝐺(𝐹𝑥)))
16 fvex 6680 . . . . . . 7 (𝐹𝑥) ∈ V
17 breq2 5067 . . . . . . . 8 (𝑦 = (𝐹𝑥) → (𝑥𝐺𝑦𝑥𝐺(𝐹𝑥)))
1817notbid 319 . . . . . . 7 (𝑦 = (𝐹𝑥) → (¬ 𝑥𝐺𝑦 ↔ ¬ 𝑥𝐺(𝐹𝑥)))
1916, 18ceqsexv 3547 . . . . . 6 (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ¬ 𝑥𝐺(𝐹𝑥))
2015, 19syl6bbr 290 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝐹𝑥) ≠ (𝐺𝑥) ↔ ∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦)))
21 eqcom 2833 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
22 fnbrfvb 6715 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2321, 22syl5bb 284 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2423adantlr 711 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
2524anbi1d 629 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦)))
26 brdif 5116 . . . . . . 7 (𝑥(𝐹𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐺𝑦))
2725, 26syl6bbr 290 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ((𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ 𝑥(𝐹𝐺)𝑦))
2827exbidv 1915 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦(𝑦 = (𝐹𝑥) ∧ ¬ 𝑥𝐺𝑦) ↔ ∃𝑦 𝑥(𝐹𝐺)𝑦))
2920, 28bitr2d 281 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3010, 29syl5bb 284 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → (𝑥 ∈ dom (𝐹𝐺) ↔ (𝐹𝑥) ≠ (𝐺𝑥)))
3130rabbi2dva 4198 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ∩ dom (𝐹𝐺)) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
328, 31eqtr3d 2863 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) = {𝑥𝐴 ∣ (𝐹𝑥) ≠ (𝐺𝑥)})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530  ∃wex 1773   ∈ wcel 2107   ≠ wne 3021  {crab 3147   ∖ cdif 3937   ∩ cin 3939   ⊆ wss 3940   class class class wbr 5063  dom cdm 5554   Fn wfn 6347  ‘cfv 6352 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6312  df-fun 6354  df-fn 6355  df-fv 6360 This theorem is referenced by:  fndmdifcom  6809  fndmdifeq0  6810  fndifnfp  6934  wemapsolem  9003  wemapso2lem  9005  dsmmbas2  20800  frlmbas  20818  ptcmplem2  22580
 Copyright terms: Public domain W3C validator