MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopt Structured version   Visualization version   GIF version

Theorem xkopt 22260
Description: The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
xkopt ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅})))

Proof of Theorem xkopt
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 21600 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 simpl 486 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝑅 ∈ Top)
3 unipw 5308 . . . . . 6 𝒫 𝐴 = 𝐴
43eqcomi 2807 . . . . 5 𝐴 = 𝒫 𝐴
5 eqid 2798 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}
6 eqid 2798 . . . . 5 (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣})
74, 5, 6xkoval 22192 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝑅 ∈ Top) → (𝑅ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))))
81, 2, 7syl2an2 685 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))))
9 simpr 488 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝐴𝑉)
10 fconst6g 6542 . . . . . 6 (𝑅 ∈ Top → (𝐴 × {𝑅}):𝐴⟶Top)
1110adantr 484 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝐴 × {𝑅}):𝐴⟶Top)
12 pttop 22187 . . . . 5 ((𝐴𝑉 ∧ (𝐴 × {𝑅}):𝐴⟶Top) → (∏t‘(𝐴 × {𝑅})) ∈ Top)
139, 11, 12syl2anc 587 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∏t‘(𝐴 × {𝑅})) ∈ Top)
14 elpwi 4506 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
15 restdis 21783 . . . . . . . . . . . . . 14 ((𝐴𝑉𝑥𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1614, 15sylan2 595 . . . . . . . . . . . . 13 ((𝐴𝑉𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1716adantll 713 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1817eleq1d 2874 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴t 𝑥) ∈ Comp ↔ 𝒫 𝑥 ∈ Comp))
19 discmp 22003 . . . . . . . . . . 11 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Comp)
2018, 19syl6bbr 292 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴t 𝑥) ∈ Comp ↔ 𝑥 ∈ Fin))
2120rabbidva 3425 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin})
22 dfin5 3889 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = {𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin}
2321, 22eqtr4di 2851 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = (𝒫 𝐴 ∩ Fin))
24 eqidd 2799 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝑅 = 𝑅)
25 toptopon2 21523 . . . . . . . . . 10 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
26 cndis 21896 . . . . . . . . . . 11 ((𝐴𝑉𝑅 ∈ (TopOn‘ 𝑅)) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅m 𝐴))
2726ancoms 462 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅m 𝐴))
2825, 27sylanb 584 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅m 𝐴))
2928rabeqdv 3432 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
3023, 24, 29mpoeq123dv 7208 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}))
3130rneqd 5772 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}))
32 eqid 2798 . . . . . . 7 (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
3332rnmpo 7263 . . . . . 6 ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}}
3431, 33eqtrdi 2849 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}})
35 elmapi 8411 . . . . . . . . . . . 12 (𝑓 ∈ ( 𝑅m 𝐴) → 𝑓:𝐴 𝑅)
36 eleq2 2878 . . . . . . . . . . . . . . . . 17 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑓𝑥) ∈ 𝑣 ↔ (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
3736imbi2d 344 . . . . . . . . . . . . . . . 16 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅))))
3837bibi1d 347 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → (((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)) ↔ ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))))
39 eleq2 2878 . . . . . . . . . . . . . . . . 17 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑓𝑥) ∈ 𝑅 ↔ (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
4039imbi2d 344 . . . . . . . . . . . . . . . 16 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅))))
4140bibi1d 347 . . . . . . . . . . . . . . 15 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → (((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)) ↔ ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))))
42 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ (𝒫 𝐴 ∩ Fin))
4342elin1d 4125 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ 𝒫 𝐴)
4443elpwid 4508 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘𝐴)
4544adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑘𝐴)
4645sselda 3915 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → 𝑥𝐴)
47 simpr 488 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → 𝑥𝑘)
4846, 472thd 268 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → (𝑥𝐴𝑥𝑘))
4948imbi1d 345 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
50 ffvelrn 6826 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴 𝑅𝑥𝐴) → (𝑓𝑥) ∈ 𝑅)
5150ex 416 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴 𝑅 → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
5251adantl 485 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
5352adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
54 pm2.21 123 . . . . . . . . . . . . . . . . 17 𝑥𝑘 → (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))
5554adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))
5653, 552thd 268 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
5738, 41, 49, 56ifbothda 4462 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
5857ralbidv2 3160 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
59 ffn 6487 . . . . . . . . . . . . . . 15 (𝑓:𝐴 𝑅𝑓 Fn 𝐴)
6059adantl 485 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑓 Fn 𝐴)
61 vex 3444 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
6261elixp 8451 . . . . . . . . . . . . . . 15 (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
6362baib 539 . . . . . . . . . . . . . 14 (𝑓 Fn 𝐴 → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
6460, 63syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
65 ffun 6490 . . . . . . . . . . . . . 14 (𝑓:𝐴 𝑅 → Fun 𝑓)
66 fdm 6495 . . . . . . . . . . . . . . . 16 (𝑓:𝐴 𝑅 → dom 𝑓 = 𝐴)
6766adantl 485 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → dom 𝑓 = 𝐴)
6845, 67sseqtrrd 3956 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑘 ⊆ dom 𝑓)
69 funimass4 6705 . . . . . . . . . . . . . 14 ((Fun 𝑓𝑘 ⊆ dom 𝑓) → ((𝑓𝑘) ⊆ 𝑣 ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
7065, 68, 69syl2an2 685 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → ((𝑓𝑘) ⊆ 𝑣 ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
7158, 64, 703bitr4d 314 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓𝑘) ⊆ 𝑣))
7235, 71sylan2 595 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓 ∈ ( 𝑅m 𝐴)) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓𝑘) ⊆ 𝑣))
7372rabbi2dva 4144 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (( 𝑅m 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
74 elssuni 4830 . . . . . . . . . . . . . . . 16 (𝑣𝑅𝑣 𝑅)
7574ad2antll 728 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑣 𝑅)
76 ssid 3937 . . . . . . . . . . . . . . 15 𝑅 𝑅
77 sseq1 3940 . . . . . . . . . . . . . . . 16 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → (𝑣 𝑅 ↔ if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅))
78 sseq1 3940 . . . . . . . . . . . . . . . 16 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ( 𝑅 𝑅 ↔ if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅))
7977, 78ifboth 4463 . . . . . . . . . . . . . . 15 ((𝑣 𝑅 𝑅 𝑅) → if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
8075, 76, 79sylancl 589 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
8180ralrimivw 3150 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → ∀𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
82 ss2ixp 8457 . . . . . . . . . . . . 13 (∀𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ X𝑥𝐴 𝑅)
8381, 82syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ X𝑥𝐴 𝑅)
84 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝐴𝑉)
85 uniexg 7446 . . . . . . . . . . . . . 14 (𝑅 ∈ Top → 𝑅 ∈ V)
8685ad2antrr 725 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑅 ∈ V)
87 ixpconstg 8453 . . . . . . . . . . . . 13 ((𝐴𝑉 𝑅 ∈ V) → X𝑥𝐴 𝑅 = ( 𝑅m 𝐴))
8884, 86, 87syl2anc 587 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 𝑅 = ( 𝑅m 𝐴))
8983, 88sseqtrd 3955 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ ( 𝑅m 𝐴))
90 sseqin2 4142 . . . . . . . . . . 11 (X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ ( 𝑅m 𝐴) ↔ (( 𝑅m 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9189, 90sylib 221 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (( 𝑅m 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9273, 91eqtr3d 2835 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9310ad2antrr 725 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (𝐴 × {𝑅}):𝐴⟶Top)
9442elin2d 4126 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ Fin)
95 simplrr 777 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → 𝑣𝑅)
96 eqid 2798 . . . . . . . . . . . . . 14 𝑅 = 𝑅
9796topopn 21511 . . . . . . . . . . . . 13 (𝑅 ∈ Top → 𝑅𝑅)
9897ad3antrrr 729 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → 𝑅𝑅)
9995, 98ifcld 4470 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → if(𝑥𝑘, 𝑣, 𝑅) ∈ 𝑅)
100 fvconst2g 6941 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑥𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
101100ad4ant14 751 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
10299, 101eleqtrrd 2893 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → if(𝑥𝑘, 𝑣, 𝑅) ∈ ((𝐴 × {𝑅})‘𝑥))
103 eldifn 4055 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑘) → ¬ 𝑥𝑘)
104103iffalsed 4436 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝑘) → if(𝑥𝑘, 𝑣, 𝑅) = 𝑅)
105104adantl 485 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → if(𝑥𝑘, 𝑣, 𝑅) = 𝑅)
106 eldifi 4054 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑘) → 𝑥𝐴)
107106, 101sylan2 595 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
108107unieqd 4814 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
109105, 108eqtr4d 2836 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → if(𝑥𝑘, 𝑣, 𝑅) = ((𝐴 × {𝑅})‘𝑥))
11084, 93, 94, 102, 109ptopn 22188 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ∈ (∏t‘(𝐴 × {𝑅})))
11192, 110eqeltrd 2890 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅})))
112 eleq1 2877 . . . . . . . 8 (𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → (𝑥 ∈ (∏t‘(𝐴 × {𝑅})) ↔ {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅}))))
113111, 112syl5ibrcom 250 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅}))))
114113rexlimdvva 3253 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅}))))
115114abssdv 3996 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅m 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}} ⊆ (∏t‘(𝐴 × {𝑅})))
11634, 115eqsstrd 3953 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅})))
117 tgfiss 21596 . . . 4 (((∏t‘(𝐴 × {𝑅})) ∈ Top ∧ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅})))
11813, 116, 117syl2anc 587 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅})))
1198, 118eqsstrd 3953 . 2 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅ko 𝒫 𝐴) ⊆ (∏t‘(𝐴 × {𝑅})))
120 eqid 2798 . . . . . . . 8 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅}))
121120, 96ptuniconst 22203 . . . . . . 7 ((𝐴𝑉𝑅 ∈ Top) → ( 𝑅m 𝐴) = (∏t‘(𝐴 × {𝑅})))
122121ancoms 462 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ( 𝑅m 𝐴) = (∏t‘(𝐴 × {𝑅})))
12328, 122eqtrd 2833 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = (∏t‘(𝐴 × {𝑅})))
124123oveq2d 7151 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))))
125 eqid 2798 . . . . . 6 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅}))
126125restid 16699 . . . . 5 ((∏t‘(𝐴 × {𝑅})) ∈ Top → ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅})))
12713, 126syl 17 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅})))
128124, 127eqtrd 2833 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = (∏t‘(𝐴 × {𝑅})))
1294, 120xkoptsub 22259 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝑅 ∈ Top) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅ko 𝒫 𝐴))
1301, 2, 129syl2an2 685 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅ko 𝒫 𝐴))
131128, 130eqsstrrd 3954 . 2 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∏t‘(𝐴 × {𝑅})) ⊆ (𝑅ko 𝒫 𝐴))
132119, 131eqssd 3932 1 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  cin 3880  wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Xcixp 8444  Fincfn 8492  ficfi 8858  t crest 16686  topGenctg 16703  tcpt 16704  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  Compccmp 21991  ko cxko 22166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-pt 16710  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cmp 21992  df-xko 22168
This theorem is referenced by:  tmdgsum  22700  tmdgsum2  22701  efmndtmd  22706  symgtgp  22711
  Copyright terms: Public domain W3C validator