| Step | Hyp | Ref
| Expression |
| 1 | | distop 22938 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
| 2 | | simpl 482 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ Top) |
| 3 | | unipw 5430 |
. . . . . 6
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 4 | 3 | eqcomi 2745 |
. . . . 5
⊢ 𝐴 = ∪
𝒫 𝐴 |
| 5 | | eqid 2736 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} |
| 6 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 7 | 4, 5, 6 | xkoval 23530 |
. . . 4
⊢
((𝒫 𝐴 ∈
Top ∧ 𝑅 ∈ Top)
→ (𝑅
↑ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| 8 | 1, 2, 7 | syl2an2 686 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| 9 | | simpr 484 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
| 10 | | fconst6g 6772 |
. . . . . 6
⊢ (𝑅 ∈ Top → (𝐴 × {𝑅}):𝐴⟶Top) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 × {𝑅}):𝐴⟶Top) |
| 12 | | pttop 23525 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 × {𝑅}):𝐴⟶Top) →
(∏t‘(𝐴 × {𝑅})) ∈ Top) |
| 13 | 9, 11, 12 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∏t‘(𝐴 × {𝑅})) ∈ Top) |
| 14 | | elpwi 4587 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
| 15 | | restdis 23121 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
| 16 | 14, 15 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
| 17 | 16 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
| 18 | 17 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴 ↾t 𝑥) ∈ Comp ↔ 𝒫 𝑥 ∈ Comp)) |
| 19 | | discmp 23341 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Fin ↔ 𝒫
𝑥 ∈
Comp) |
| 20 | 18, 19 | bitr4di 289 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴 ↾t 𝑥) ∈ Comp ↔ 𝑥 ∈ Fin)) |
| 21 | 20 | rabbidva 3427 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ∈ Fin}) |
| 22 | | dfin5 3939 |
. . . . . . . . 9
⊢
(𝒫 𝐴 ∩
Fin) = {𝑥 ∈ 𝒫
𝐴 ∣ 𝑥 ∈ Fin} |
| 23 | 21, 22 | eqtr4di 2789 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = (𝒫 𝐴 ∩ Fin)) |
| 24 | | eqidd 2737 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑅) |
| 25 | | toptopon2 22861 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘∪ 𝑅)) |
| 26 | | cndis 23234 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘∪ 𝑅))
→ (𝒫 𝐴 Cn
𝑅) = (∪ 𝑅
↑m 𝐴)) |
| 27 | 26 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = (∪ 𝑅 ↑m 𝐴)) |
| 28 | 25, 27 | sylanb 581 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = (∪ 𝑅 ↑m 𝐴)) |
| 29 | 28 | rabeqdv 3436 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 30 | 23, 24, 29 | mpoeq123dv 7487 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 31 | 30 | rneqd 5923 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 32 | | eqid 2736 |
. . . . . . 7
⊢ (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 33 | 32 | rnmpo 7545 |
. . . . . 6
⊢ ran
(𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
| 34 | 31, 33 | eqtrdi 2787 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
| 35 | | elmapi 8868 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (∪ 𝑅
↑m 𝐴)
→ 𝑓:𝐴⟶∪ 𝑅) |
| 36 | | eleq2 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑓‘𝑥) ∈ 𝑣 ↔ (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
| 37 | 36 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)))) |
| 38 | 37 | bibi1d 343 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) ↔ ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)))) |
| 39 | | eleq2 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑓‘𝑥) ∈ ∪ 𝑅 ↔ (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
| 40 | 39 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)))) |
| 41 | 40 | bibi1d 343 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) ↔ ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)))) |
| 42 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ (𝒫 𝐴 ∩ Fin)) |
| 43 | 42 | elin1d 4184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ 𝒫 𝐴) |
| 44 | 43 | elpwid 4589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ⊆ 𝐴) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑘 ⊆ 𝐴) |
| 46 | 45 | sselda 3963 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝐴) |
| 47 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝑘) |
| 48 | 46, 47 | 2thd 265 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝑘)) |
| 49 | 48 | imbi1d 341 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
| 50 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴⟶∪ 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ ∪ 𝑅) |
| 51 | 50 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴⟶∪ 𝑅 → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
| 52 | 51 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
| 54 | | pm2.21 123 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 ∈ 𝑘 → (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) |
| 56 | 53, 55 | 2thd 265 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
| 57 | 38, 41, 49, 56 | ifbothda 4544 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
| 58 | 57 | ralbidv2 3160 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
| 59 | | ffn 6711 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴⟶∪ 𝑅 → 𝑓 Fn 𝐴) |
| 60 | 59 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑓 Fn 𝐴) |
| 61 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
| 62 | 61 | elixp 8923 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
| 63 | 62 | baib 535 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝐴 → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
| 64 | 60, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
| 65 | | ffun 6714 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴⟶∪ 𝑅 → Fun 𝑓) |
| 66 | | fdm 6720 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴⟶∪ 𝑅 → dom 𝑓 = 𝐴) |
| 67 | 66 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → dom 𝑓 = 𝐴) |
| 68 | 45, 67 | sseqtrrd 4001 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑘 ⊆ dom 𝑓) |
| 69 | | funimass4 6948 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝑓 ∧ 𝑘 ⊆ dom 𝑓) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
| 70 | 65, 68, 69 | syl2an2 686 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
| 71 | 58, 64, 70 | 3bitr4d 311 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 “ 𝑘) ⊆ 𝑣)) |
| 72 | 35, 71 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓 ∈ (∪ 𝑅 ↑m 𝐴)) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 “ 𝑘) ⊆ 𝑣)) |
| 73 | 72 | rabbi2dva 4206 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ((∪
𝑅 ↑m 𝐴) ∩ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 74 | | elssuni 4918 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ 𝑅 → 𝑣 ⊆ ∪ 𝑅) |
| 75 | 74 | ad2antll 729 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑣 ⊆ ∪ 𝑅) |
| 76 | | ssid 3986 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑅
⊆ ∪ 𝑅 |
| 77 | | sseq1 3989 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (𝑣 ⊆ ∪ 𝑅 ↔ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅)) |
| 78 | | sseq1 3989 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (∪ 𝑅
⊆ ∪ 𝑅 ↔ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅)) |
| 79 | 77, 78 | ifboth 4545 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ⊆ ∪ 𝑅
∧ ∪ 𝑅 ⊆ ∪ 𝑅) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
| 80 | 75, 76, 79 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
| 81 | 80 | ralrimivw 3137 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ∀𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
| 82 | | ss2ixp 8929 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅
→ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ X𝑥 ∈
𝐴 ∪ 𝑅) |
| 83 | 81, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ X𝑥 ∈
𝐴 ∪ 𝑅) |
| 84 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝐴 ∈ 𝑉) |
| 85 | | uniexg 7739 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ V) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ∪ 𝑅 ∈ V) |
| 87 | | ixpconstg 8925 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑅 ∈ V) → X𝑥 ∈
𝐴 ∪ 𝑅 =
(∪ 𝑅 ↑m 𝐴)) |
| 88 | 84, 86, 87 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 ∪ 𝑅 = (∪
𝑅 ↑m 𝐴)) |
| 89 | 83, 88 | sseqtrd 4000 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ (∪ 𝑅
↑m 𝐴)) |
| 90 | | sseqin2 4203 |
. . . . . . . . . . 11
⊢ (X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ (∪ 𝑅
↑m 𝐴)
↔ ((∪ 𝑅 ↑m 𝐴) ∩ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
| 91 | 89, 90 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ((∪
𝑅 ↑m 𝐴) ∩ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
| 92 | 73, 91 | eqtr3d 2773 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
| 93 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → (𝐴 × {𝑅}):𝐴⟶Top) |
| 94 | 42 | elin2d 4185 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ Fin) |
| 95 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → 𝑣 ∈ 𝑅) |
| 96 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑅 =
∪ 𝑅 |
| 97 | 96 | topopn 22849 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ 𝑅) |
| 98 | 97 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → ∪ 𝑅 ∈ 𝑅) |
| 99 | 95, 98 | ifcld 4552 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈ 𝑅) |
| 100 | | fvconst2g 7199 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
| 101 | 100 | ad4ant14 752 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
| 102 | 99, 101 | eleqtrrd 2838 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈ ((𝐴 × {𝑅})‘𝑥)) |
| 103 | | eldifn 4112 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → ¬ 𝑥 ∈ 𝑘) |
| 104 | 103 | iffalsed 4516 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
𝑅) |
| 105 | 104 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
𝑅) |
| 106 | | eldifi 4111 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → 𝑥 ∈ 𝐴) |
| 107 | 106, 101 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
| 108 | 107 | unieqd 4901 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → ∪
((𝐴 × {𝑅})‘𝑥) = ∪ 𝑅) |
| 109 | 105, 108 | eqtr4d 2774 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
((𝐴 × {𝑅})‘𝑥)) |
| 110 | 84, 93, 94, 102, 109 | ptopn 23526 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈
(∏t‘(𝐴 × {𝑅}))) |
| 111 | 92, 110 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅}))) |
| 112 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (𝑥 ∈ (∏t‘(𝐴 × {𝑅})) ↔ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅})))) |
| 113 | 111, 112 | syl5ibrcom 247 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → (𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅})))) |
| 114 | 113 | rexlimdvva 3202 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅})))) |
| 115 | 114 | abssdv 4048 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ⊆ (∏t‘(𝐴 × {𝑅}))) |
| 116 | 34, 115 | eqsstrd 3998 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) |
| 117 | | tgfiss 22934 |
. . . 4
⊢
(((∏t‘(𝐴 × {𝑅})) ∈ Top ∧ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) → (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅}))) |
| 118 | 13, 116, 117 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅}))) |
| 119 | 8, 118 | eqsstrd 3998 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) ⊆
(∏t‘(𝐴 × {𝑅}))) |
| 120 | | eqid 2736 |
. . . . . . . 8
⊢
(∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅})) |
| 121 | 120, 96 | ptuniconst 23541 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (∪ 𝑅
↑m 𝐴) =
∪ (∏t‘(𝐴 × {𝑅}))) |
| 122 | 121 | ancoms 458 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∪ 𝑅 ↑m 𝐴) = ∪
(∏t‘(𝐴 × {𝑅}))) |
| 123 | 28, 122 | eqtrd 2771 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = ∪
(∏t‘(𝐴 × {𝑅}))) |
| 124 | 123 | oveq2d 7426 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = ((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅})))) |
| 125 | | eqid 2736 |
. . . . . 6
⊢ ∪ (∏t‘(𝐴 × {𝑅})) = ∪
(∏t‘(𝐴 × {𝑅})) |
| 126 | 125 | restid 17452 |
. . . . 5
⊢
((∏t‘(𝐴 × {𝑅})) ∈ Top →
((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅}))) |
| 127 | 13, 126 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅}))) |
| 128 | 124, 127 | eqtrd 2771 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = (∏t‘(𝐴 × {𝑅}))) |
| 129 | 4, 120 | xkoptsub 23597 |
. . . 4
⊢
((𝒫 𝐴 ∈
Top ∧ 𝑅 ∈ Top)
→ ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
| 130 | 1, 2, 129 | syl2an2 686 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
| 131 | 128, 130 | eqsstrrd 3999 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∏t‘(𝐴 × {𝑅})) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
| 132 | 119, 131 | eqssd 3981 |
1
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝑅}))) |