Step | Hyp | Ref
| Expression |
1 | | distop 22145 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
2 | | simpl 483 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝑅 ∈ Top) |
3 | | unipw 5366 |
. . . . . 6
⊢ ∪ 𝒫 𝐴 = 𝐴 |
4 | 3 | eqcomi 2747 |
. . . . 5
⊢ 𝐴 = ∪
𝒫 𝐴 |
5 | | eqid 2738 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} |
6 | | eqid 2738 |
. . . . 5
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
7 | 4, 5, 6 | xkoval 22738 |
. . . 4
⊢
((𝒫 𝐴 ∈
Top ∧ 𝑅 ∈ Top)
→ (𝑅
↑ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
8 | 1, 2, 7 | syl2an2 683 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
9 | | simpr 485 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
10 | | fconst6g 6663 |
. . . . . 6
⊢ (𝑅 ∈ Top → (𝐴 × {𝑅}):𝐴⟶Top) |
11 | 10 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 × {𝑅}):𝐴⟶Top) |
12 | | pttop 22733 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐴 × {𝑅}):𝐴⟶Top) →
(∏t‘(𝐴 × {𝑅})) ∈ Top) |
13 | 9, 11, 12 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∏t‘(𝐴 × {𝑅})) ∈ Top) |
14 | | elpwi 4542 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) |
15 | | restdis 22329 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
16 | 14, 15 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
17 | 16 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴 ↾t 𝑥) = 𝒫 𝑥) |
18 | 17 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴 ↾t 𝑥) ∈ Comp ↔ 𝒫 𝑥 ∈ Comp)) |
19 | | discmp 22549 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ Fin ↔ 𝒫
𝑥 ∈
Comp) |
20 | 18, 19 | bitr4di 289 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴 ↾t 𝑥) ∈ Comp ↔ 𝑥 ∈ Fin)) |
21 | 20 | rabbidva 3413 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ∈ Fin}) |
22 | | dfin5 3895 |
. . . . . . . . 9
⊢
(𝒫 𝐴 ∩
Fin) = {𝑥 ∈ 𝒫
𝐴 ∣ 𝑥 ∈ Fin} |
23 | 21, 22 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp} = (𝒫 𝐴 ∩ Fin)) |
24 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝑅 = 𝑅) |
25 | | toptopon2 22067 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘∪ 𝑅)) |
26 | | cndis 22442 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ (TopOn‘∪ 𝑅))
→ (𝒫 𝐴 Cn
𝑅) = (∪ 𝑅
↑m 𝐴)) |
27 | 26 | ancoms 459 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ (TopOn‘∪ 𝑅)
∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = (∪ 𝑅 ↑m 𝐴)) |
28 | 25, 27 | sylanb 581 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = (∪ 𝑅 ↑m 𝐴)) |
29 | 28 | rabeqdv 3419 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
30 | 23, 24, 29 | mpoeq123dv 7350 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
31 | 30 | rneqd 5847 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
32 | | eqid 2738 |
. . . . . . 7
⊢ (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
33 | 32 | rnmpo 7407 |
. . . . . 6
⊢ ran
(𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
34 | 31, 33 | eqtrdi 2794 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
35 | | elmapi 8637 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (∪ 𝑅
↑m 𝐴)
→ 𝑓:𝐴⟶∪ 𝑅) |
36 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑓‘𝑥) ∈ 𝑣 ↔ (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
37 | 36 | imbi2d 341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)))) |
38 | 37 | bibi1d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) ↔ ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)))) |
39 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑓‘𝑥) ∈ ∪ 𝑅 ↔ (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
40 | 39 | imbi2d 341 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)))) |
41 | 40 | bibi1d 344 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) ↔ ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)))) |
42 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ (𝒫 𝐴 ∩ Fin)) |
43 | 42 | elin1d 4132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ 𝒫 𝐴) |
44 | 43 | elpwid 4544 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ⊆ 𝐴) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑘 ⊆ 𝐴) |
46 | 45 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝐴) |
47 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → 𝑥 ∈ 𝑘) |
48 | 46, 47 | 2thd 264 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝑘)) |
49 | 48 | imbi1d 342 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ 𝑥 ∈ 𝑘) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ 𝑣) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
50 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:𝐴⟶∪ 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝑓‘𝑥) ∈ ∪ 𝑅) |
51 | 50 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:𝐴⟶∪ 𝑅 → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
52 | 51 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅)) |
54 | | pm2.21 123 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 ∈ 𝑘 → (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) |
55 | 54 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣)) |
56 | 53, 55 | 2thd 264 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ Top
∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) ∧ ¬ 𝑥 ∈ 𝑘) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ ∪ 𝑅) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
57 | 38, 41, 49, 56 | ifbothda 4497 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → ((𝑥 ∈ 𝐴 → (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) ↔ (𝑥 ∈ 𝑘 → (𝑓‘𝑥) ∈ 𝑣))) |
58 | 57 | ralbidv2 3110 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
59 | | ffn 6600 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝐴⟶∪ 𝑅 → 𝑓 Fn 𝐴) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑓 Fn 𝐴) |
61 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
62 | 61 | elixp 8692 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
63 | 62 | baib 536 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝐴 → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
64 | 60, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅))) |
65 | | ffun 6603 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴⟶∪ 𝑅 → Fun 𝑓) |
66 | | fdm 6609 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:𝐴⟶∪ 𝑅 → dom 𝑓 = 𝐴) |
67 | 66 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → dom 𝑓 = 𝐴) |
68 | 45, 67 | sseqtrrd 3962 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → 𝑘 ⊆ dom 𝑓) |
69 | | funimass4 6834 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝑓 ∧ 𝑘 ⊆ dom 𝑓) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
70 | 65, 68, 69 | syl2an2 683 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ∀𝑥 ∈ 𝑘 (𝑓‘𝑥) ∈ 𝑣)) |
71 | 58, 64, 70 | 3bitr4d 311 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓:𝐴⟶∪ 𝑅) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 “ 𝑘) ⊆ 𝑣)) |
72 | 35, 71 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑓 ∈ (∪ 𝑅 ↑m 𝐴)) → (𝑓 ∈ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ↔ (𝑓 “ 𝑘) ⊆ 𝑣)) |
73 | 72 | rabbi2dva 4151 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ((∪
𝑅 ↑m 𝐴) ∩ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
74 | | elssuni 4871 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ 𝑅 → 𝑣 ⊆ ∪ 𝑅) |
75 | 74 | ad2antll 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑣 ⊆ ∪ 𝑅) |
76 | | ssid 3943 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑅
⊆ ∪ 𝑅 |
77 | | sseq1 3946 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (𝑣 ⊆ ∪ 𝑅 ↔ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅)) |
78 | | sseq1 3946 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑅 =
if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) → (∪ 𝑅
⊆ ∪ 𝑅 ↔ if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅)) |
79 | 77, 78 | ifboth 4498 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ⊆ ∪ 𝑅
∧ ∪ 𝑅 ⊆ ∪ 𝑅) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
80 | 75, 76, 79 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
81 | 80 | ralrimivw 3104 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ∀𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅) |
82 | | ss2ixp 8698 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ ∪ 𝑅
→ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ X𝑥 ∈
𝐴 ∪ 𝑅) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ X𝑥 ∈
𝐴 ∪ 𝑅) |
84 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝐴 ∈ 𝑉) |
85 | | uniexg 7593 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ V) |
86 | 85 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ∪ 𝑅 ∈ V) |
87 | | ixpconstg 8694 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑅 ∈ V) → X𝑥 ∈
𝐴 ∪ 𝑅 =
(∪ 𝑅 ↑m 𝐴)) |
88 | 84, 86, 87 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 ∪ 𝑅 = (∪
𝑅 ↑m 𝐴)) |
89 | 83, 88 | sseqtrd 3961 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ (∪ 𝑅
↑m 𝐴)) |
90 | | sseqin2 4149 |
. . . . . . . . . . 11
⊢ (X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ⊆ (∪ 𝑅
↑m 𝐴)
↔ ((∪ 𝑅 ↑m 𝐴) ∩ X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
91 | 89, 90 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → ((∪
𝑅 ↑m 𝐴) ∩ X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) = X𝑥 ∈
𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
92 | 73, 91 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} = X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅)) |
93 | 10 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → (𝐴 × {𝑅}):𝐴⟶Top) |
94 | 42 | elin2d 4133 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → 𝑘 ∈ Fin) |
95 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → 𝑣 ∈ 𝑅) |
96 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑅 =
∪ 𝑅 |
97 | 96 | topopn 22055 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Top → ∪ 𝑅
∈ 𝑅) |
98 | 97 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → ∪ 𝑅 ∈ 𝑅) |
99 | 95, 98 | ifcld 4505 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈ 𝑅) |
100 | | fvconst2g 7077 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
101 | 100 | ad4ant14 749 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
102 | 99, 101 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ 𝐴) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈ ((𝐴 × {𝑅})‘𝑥)) |
103 | | eldifn 4062 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → ¬ 𝑥 ∈ 𝑘) |
104 | 103 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
𝑅) |
105 | 104 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
𝑅) |
106 | | eldifi 4061 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴 ∖ 𝑘) → 𝑥 ∈ 𝐴) |
107 | 106, 101 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅) |
108 | 107 | unieqd 4853 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → ∪
((𝐴 × {𝑅})‘𝑥) = ∪ 𝑅) |
109 | 105, 108 | eqtr4d 2781 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) ∧ 𝑥 ∈ (𝐴 ∖ 𝑘)) → if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) = ∪
((𝐴 × {𝑅})‘𝑥)) |
110 | 84, 93, 94, 102, 109 | ptopn 22734 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → X𝑥 ∈ 𝐴 if(𝑥 ∈ 𝑘, 𝑣, ∪ 𝑅) ∈
(∏t‘(𝐴 × {𝑅}))) |
111 | 92, 110 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅}))) |
112 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (𝑥 ∈ (∏t‘(𝐴 × {𝑅})) ↔ {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅})))) |
113 | 111, 112 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣 ∈ 𝑅)) → (𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅})))) |
114 | 113 | rexlimdvva 3223 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅})))) |
115 | 114 | abssdv 4002 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣 ∈ 𝑅 𝑥 = {𝑓 ∈ (∪ 𝑅 ↑m 𝐴) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ⊆ (∏t‘(𝐴 × {𝑅}))) |
116 | 34, 115 | eqsstrd 3959 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) |
117 | | tgfiss 22141 |
. . . 4
⊢
(((∏t‘(𝐴 × {𝑅})) ∈ Top ∧ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) → (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅}))) |
118 | 13, 116, 117 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅}))) |
119 | 8, 118 | eqsstrd 3959 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) ⊆
(∏t‘(𝐴 × {𝑅}))) |
120 | | eqid 2738 |
. . . . . . . 8
⊢
(∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅})) |
121 | 120, 96 | ptuniconst 22749 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ Top) → (∪ 𝑅
↑m 𝐴) =
∪ (∏t‘(𝐴 × {𝑅}))) |
122 | 121 | ancoms 459 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∪ 𝑅 ↑m 𝐴) = ∪
(∏t‘(𝐴 × {𝑅}))) |
123 | 28, 122 | eqtrd 2778 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝒫 𝐴 Cn 𝑅) = ∪
(∏t‘(𝐴 × {𝑅}))) |
124 | 123 | oveq2d 7291 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = ((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅})))) |
125 | | eqid 2738 |
. . . . . 6
⊢ ∪ (∏t‘(𝐴 × {𝑅})) = ∪
(∏t‘(𝐴 × {𝑅})) |
126 | 125 | restid 17144 |
. . . . 5
⊢
((∏t‘(𝐴 × {𝑅})) ∈ Top →
((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅}))) |
127 | 13, 126 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t ∪ (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅}))) |
128 | 124, 127 | eqtrd 2778 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = (∏t‘(𝐴 × {𝑅}))) |
129 | 4, 120 | xkoptsub 22805 |
. . . 4
⊢
((𝒫 𝐴 ∈
Top ∧ 𝑅 ∈ Top)
→ ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
130 | 1, 2, 129 | syl2an2 683 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
131 | 128, 130 | eqsstrrd 3960 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (∏t‘(𝐴 × {𝑅})) ⊆ (𝑅 ↑ko 𝒫 𝐴)) |
132 | 119, 131 | eqssd 3938 |
1
⊢ ((𝑅 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝑅 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝑅}))) |