MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordthmeolem Structured version   Visualization version   GIF version

Theorem ordthmeolem 23725
Description: Lemma for ordthmeo 23726. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordthmeo.1 𝑋 = dom 𝑅
ordthmeo.2 𝑌 = dom 𝑆
Assertion
Ref Expression
ordthmeolem ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))

Proof of Theorem ordthmeolem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 7337 . . . 4 (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹:𝑋1-1-onto𝑌)
213ad2ant3 1132 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹:𝑋1-1-onto𝑌)
3 f1of 6844 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
42, 3syl 17 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹:𝑋𝑌)
5 fimacnv 6750 . . . . . . 7 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
64, 5syl 17 . . . . . 6 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝐹𝑌) = 𝑋)
7 ordthmeo.1 . . . . . . . . 9 𝑋 = dom 𝑅
87ordttopon 23117 . . . . . . . 8 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
983ad2ant1 1130 . . . . . . 7 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
10 toponmax 22848 . . . . . . 7 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 ∈ (ordTop‘𝑅))
119, 10syl 17 . . . . . 6 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝑋 ∈ (ordTop‘𝑅))
126, 11eqeltrd 2829 . . . . 5 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝐹𝑌) ∈ (ordTop‘𝑅))
13 elsni 4649 . . . . . . 7 (𝑧 ∈ {𝑌} → 𝑧 = 𝑌)
1413imaeq2d 6068 . . . . . 6 (𝑧 ∈ {𝑌} → (𝐹𝑧) = (𝐹𝑌))
1514eleq1d 2814 . . . . 5 (𝑧 ∈ {𝑌} → ((𝐹𝑧) ∈ (ordTop‘𝑅) ↔ (𝐹𝑌) ∈ (ordTop‘𝑅)))
1612, 15syl5ibrcom 246 . . . 4 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝑧 ∈ {𝑌} → (𝐹𝑧) ∈ (ordTop‘𝑅)))
1716ralrimiv 3142 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ {𝑌} (𝐹𝑧) ∈ (ordTop‘𝑅))
18 cnvimass 6090 . . . . . . . . . 10 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ dom 𝐹
19 f1odm 6848 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
202, 19syl 17 . . . . . . . . . . 11 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → dom 𝐹 = 𝑋)
2120adantr 479 . . . . . . . . . 10 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → dom 𝐹 = 𝑋)
2218, 21sseqtrid 4034 . . . . . . . . 9 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ 𝑋)
23 sseqin2 4217 . . . . . . . . 9 ((𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ 𝑋 ↔ (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}))
2422, 23sylib 217 . . . . . . . 8 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}))
252ad2antrr 724 . . . . . . . . . . . 12 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → 𝐹:𝑋1-1-onto𝑌)
26 f1ofn 6845 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
2725, 26syl 17 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → 𝐹 Fn 𝑋)
28 elpreima 7072 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})))
2927, 28syl 17 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})))
30 simpr 483 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → 𝑧𝑋)
3130biantrurd 531 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})))
324adantr 479 . . . . . . . . . . . . 13 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → 𝐹:𝑋𝑌)
3332ffvelcdmda 7099 . . . . . . . . . . . 12 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ 𝑌)
34 breq1 5155 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑧) → (𝑦𝑆𝑥 ↔ (𝐹𝑧)𝑆𝑥))
3534notbid 317 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑧) → (¬ 𝑦𝑆𝑥 ↔ ¬ (𝐹𝑧)𝑆𝑥))
3635elrab3 3685 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ 𝑌 → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ (𝐹𝑧)𝑆𝑥))
3733, 36syl 17 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ (𝐹𝑧)𝑆𝑥))
38 simpll3 1211 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌))
39 f1ocnv 6856 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
40 f1of 6844 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
412, 39, 403syl 18 . . . . . . . . . . . . . . . 16 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹:𝑌𝑋)
4241ffvelcdmda 7099 . . . . . . . . . . . . . . 15 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
4342adantr 479 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝐹𝑥) ∈ 𝑋)
44 isorel 7340 . . . . . . . . . . . . . 14 ((𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) ∧ (𝑧𝑋 ∧ (𝐹𝑥) ∈ 𝑋)) → (𝑧𝑅(𝐹𝑥) ↔ (𝐹𝑧)𝑆(𝐹‘(𝐹𝑥))))
4538, 30, 43, 44syl12anc 835 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧𝑅(𝐹𝑥) ↔ (𝐹𝑧)𝑆(𝐹‘(𝐹𝑥))))
46 f1ocnvfv2 7292 . . . . . . . . . . . . . . . 16 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
472, 46sylan 578 . . . . . . . . . . . . . . 15 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
4847adantr 479 . . . . . . . . . . . . . 14 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝐹‘(𝐹𝑥)) = 𝑥)
4948breq2d 5164 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧)𝑆(𝐹‘(𝐹𝑥)) ↔ (𝐹𝑧)𝑆𝑥))
5045, 49bitrd 278 . . . . . . . . . . . 12 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧𝑅(𝐹𝑥) ↔ (𝐹𝑧)𝑆𝑥))
5150notbid 317 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (¬ 𝑧𝑅(𝐹𝑥) ↔ ¬ (𝐹𝑧)𝑆𝑥))
5237, 51bitr4d 281 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ 𝑧𝑅(𝐹𝑥)))
5329, 31, 523bitr2d 306 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ ¬ 𝑧𝑅(𝐹𝑥)))
5453rabbi2dva 4220 . . . . . . . 8 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})) = {𝑧𝑋 ∣ ¬ 𝑧𝑅(𝐹𝑥)})
5524, 54eqtr3d 2770 . . . . . . 7 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) = {𝑧𝑋 ∣ ¬ 𝑧𝑅(𝐹𝑥)})
56 simpl1 1188 . . . . . . . 8 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → 𝑅𝑉)
577ordtopn1 23118 . . . . . . . 8 ((𝑅𝑉 ∧ (𝐹𝑥) ∈ 𝑋) → {𝑧𝑋 ∣ ¬ 𝑧𝑅(𝐹𝑥)} ∈ (ordTop‘𝑅))
5856, 42, 57syl2anc 582 . . . . . . 7 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → {𝑧𝑋 ∣ ¬ 𝑧𝑅(𝐹𝑥)} ∈ (ordTop‘𝑅))
5955, 58eqeltrd 2829 . . . . . 6 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅))
6059ralrimiva 3143 . . . . 5 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅))
61 ordthmeo.2 . . . . . . . . . 10 𝑌 = dom 𝑆
62 dmexg 7915 . . . . . . . . . 10 (𝑆𝑊 → dom 𝑆 ∈ V)
6361, 62eqeltrid 2833 . . . . . . . . 9 (𝑆𝑊𝑌 ∈ V)
64633ad2ant2 1131 . . . . . . . 8 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝑌 ∈ V)
65 rabexg 5337 . . . . . . . 8 (𝑌 ∈ V → {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V)
6664, 65syl 17 . . . . . . 7 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V)
6766ralrimivw 3147 . . . . . 6 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥𝑌 {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V)
68 eqid 2728 . . . . . . 7 (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) = (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})
69 imaeq2 6064 . . . . . . . 8 (𝑧 = {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} → (𝐹𝑧) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}))
7069eleq1d 2814 . . . . . . 7 (𝑧 = {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} → ((𝐹𝑧) ∈ (ordTop‘𝑅) ↔ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅)))
7168, 70ralrnmptw 7109 . . . . . 6 (∀𝑥𝑌 {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V → (∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅)))
7267, 71syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅)))
7360, 72mpbird 256 . . . 4 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})(𝐹𝑧) ∈ (ordTop‘𝑅))
74 cnvimass 6090 . . . . . . . . . 10 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ dom 𝐹
7574, 21sseqtrid 4034 . . . . . . . . 9 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ 𝑋)
76 sseqin2 4217 . . . . . . . . 9 ((𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ 𝑋 ↔ (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))
7775, 76sylib 217 . . . . . . . 8 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))
78 elpreima 7072 . . . . . . . . . . 11 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))
7927, 78syl 17 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))
8030biantrurd 531 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))
81 breq2 5156 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑧) → (𝑥𝑆𝑦𝑥𝑆(𝐹𝑧)))
8281notbid 317 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑧) → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑥𝑆(𝐹𝑧)))
8382elrab3 3685 . . . . . . . . . . . 12 ((𝐹𝑧) ∈ 𝑌 → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ 𝑥𝑆(𝐹𝑧)))
8433, 83syl 17 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ 𝑥𝑆(𝐹𝑧)))
85 isorel 7340 . . . . . . . . . . . . . 14 ((𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) ∧ ((𝐹𝑥) ∈ 𝑋𝑧𝑋)) → ((𝐹𝑥)𝑅𝑧 ↔ (𝐹‘(𝐹𝑥))𝑆(𝐹𝑧)))
8638, 43, 30, 85syl12anc 835 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑥)𝑅𝑧 ↔ (𝐹‘(𝐹𝑥))𝑆(𝐹𝑧)))
8748breq1d 5162 . . . . . . . . . . . . 13 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹‘(𝐹𝑥))𝑆(𝐹𝑧) ↔ 𝑥𝑆(𝐹𝑧)))
8886, 87bitrd 278 . . . . . . . . . . . 12 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑥)𝑅𝑧𝑥𝑆(𝐹𝑧)))
8988notbid 317 . . . . . . . . . . 11 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (¬ (𝐹𝑥)𝑅𝑧 ↔ ¬ 𝑥𝑆(𝐹𝑧)))
9084, 89bitr4d 281 . . . . . . . . . 10 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ (𝐹𝑥)𝑅𝑧))
9179, 80, 903bitr2d 306 . . . . . . . . 9 ((((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) ∧ 𝑧𝑋) → (𝑧 ∈ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ ¬ (𝐹𝑥)𝑅𝑧))
9291rabbi2dva 4220 . . . . . . . 8 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝑋 ∩ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})) = {𝑧𝑋 ∣ ¬ (𝐹𝑥)𝑅𝑧})
9377, 92eqtr3d 2770 . . . . . . 7 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) = {𝑧𝑋 ∣ ¬ (𝐹𝑥)𝑅𝑧})
947ordtopn2 23119 . . . . . . . 8 ((𝑅𝑉 ∧ (𝐹𝑥) ∈ 𝑋) → {𝑧𝑋 ∣ ¬ (𝐹𝑥)𝑅𝑧} ∈ (ordTop‘𝑅))
9556, 42, 94syl2anc 582 . . . . . . 7 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → {𝑧𝑋 ∣ ¬ (𝐹𝑥)𝑅𝑧} ∈ (ordTop‘𝑅))
9693, 95eqeltrd 2829 . . . . . 6 (((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥𝑌) → (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅))
9796ralrimiva 3143 . . . . 5 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅))
98 rabexg 5337 . . . . . . . 8 (𝑌 ∈ V → {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V)
9964, 98syl 17 . . . . . . 7 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V)
10099ralrimivw 3147 . . . . . 6 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥𝑌 {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V)
101 eqid 2728 . . . . . . 7 (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) = (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})
102 imaeq2 6064 . . . . . . . 8 (𝑧 = {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} → (𝐹𝑧) = (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))
103102eleq1d 2814 . . . . . . 7 (𝑧 = {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} → ((𝐹𝑧) ∈ (ordTop‘𝑅) ↔ (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅)))
104101, 103ralrnmptw 7109 . . . . . 6 (∀𝑥𝑌 {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V → (∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅)))
105100, 104syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥𝑌 (𝐹 “ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅)))
10697, 105mpbird 256 . . . 4 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})(𝐹𝑧) ∈ (ordTop‘𝑅))
107 ralunb 4193 . . . 4 (∀𝑧 ∈ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ (∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})(𝐹𝑧) ∈ (ordTop‘𝑅) ∧ ∀𝑧 ∈ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})(𝐹𝑧) ∈ (ordTop‘𝑅)))
10873, 106, 107sylanbrc 581 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))(𝐹𝑧) ∈ (ordTop‘𝑅))
109 ralunb 4193 . . 3 (∀𝑧 ∈ ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))(𝐹𝑧) ∈ (ordTop‘𝑅) ↔ (∀𝑧 ∈ {𝑌} (𝐹𝑧) ∈ (ordTop‘𝑅) ∧ ∀𝑧 ∈ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))(𝐹𝑧) ∈ (ordTop‘𝑅)))
11017, 108, 109sylanbrc 581 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))(𝐹𝑧) ∈ (ordTop‘𝑅))
111 eqid 2728 . . . . . . 7 ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) = ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥})
112 eqid 2728 . . . . . . 7 ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}) = ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})
11361, 111, 112ordtuni 23114 . . . . . 6 (𝑆𝑊𝑌 = ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))))
114113, 63eqeltrrd 2830 . . . . 5 (𝑆𝑊 ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V)
115 uniexb 7772 . . . . 5 (({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V ↔ ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V)
116114, 115sylibr 233 . . . 4 (𝑆𝑊 → ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V)
1171163ad2ant2 1131 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V)
11861, 111, 112ordtval 23113 . . . 4 (𝑆𝑊 → (ordTop‘𝑆) = (topGen‘(fi‘({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))))))
1191183ad2ant2 1131 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑆) = (topGen‘(fi‘({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦}))))))
12061ordttopon 23117 . . . 4 (𝑆𝑊 → (ordTop‘𝑆) ∈ (TopOn‘𝑌))
1211203ad2ant2 1131 . . 3 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑆) ∈ (TopOn‘𝑌))
1229, 117, 119, 121subbascn 23178 . 2 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑧 ∈ ({𝑌} ∪ (ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥𝑌 ↦ {𝑦𝑌 ∣ ¬ 𝑥𝑆𝑦})))(𝐹𝑧) ∈ (ordTop‘𝑅))))
1234, 110, 122mpbir2and 711 1 ((𝑅𝑉𝑆𝑊𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  {crab 3430  Vcvv 3473  cun 3947  cin 3948  wss 3949  {csn 4632   cuni 4912   class class class wbr 5152  cmpt 5235  ccnv 5681  dom cdm 5682  ran crn 5683  cima 5685   Fn wfn 6548  wf 6549  1-1-ontowf1o 6552  cfv 6553   Isom wiso 6554  (class class class)co 7426  ficfi 9441  topGenctg 17426  ordTopcordt 17488  TopOnctopon 22832   Cn ccn 23148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-fin 8974  df-fi 9442  df-topgen 17432  df-ordt 17490  df-top 22816  df-topon 22833  df-bases 22869  df-cn 23151
This theorem is referenced by:  ordthmeo  23726  xrmulc1cn  33564
  Copyright terms: Public domain W3C validator