Step | Hyp | Ref
| Expression |
1 | | isof1o 7174 |
. . . 4
⊢ (𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) → 𝐹:𝑋–1-1-onto→𝑌) |
2 | 1 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹:𝑋–1-1-onto→𝑌) |
3 | | f1of 6700 |
. . 3
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹:𝑋⟶𝑌) |
5 | | fimacnv 6606 |
. . . . . . 7
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (◡𝐹 “ 𝑌) = 𝑋) |
7 | | ordthmeo.1 |
. . . . . . . . 9
⊢ 𝑋 = dom 𝑅 |
8 | 7 | ordttopon 22252 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
9 | 8 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
10 | | toponmax 21983 |
. . . . . . 7
⊢
((ordTop‘𝑅)
∈ (TopOn‘𝑋)
→ 𝑋 ∈
(ordTop‘𝑅)) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝑋 ∈ (ordTop‘𝑅)) |
12 | 6, 11 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (◡𝐹 “ 𝑌) ∈ (ordTop‘𝑅)) |
13 | | elsni 4575 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑌} → 𝑧 = 𝑌) |
14 | 13 | imaeq2d 5958 |
. . . . . 6
⊢ (𝑧 ∈ {𝑌} → (◡𝐹 “ 𝑧) = (◡𝐹 “ 𝑌)) |
15 | 14 | eleq1d 2823 |
. . . . 5
⊢ (𝑧 ∈ {𝑌} → ((◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ (◡𝐹 “ 𝑌) ∈ (ordTop‘𝑅))) |
16 | 12, 15 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝑧 ∈ {𝑌} → (◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅))) |
17 | 16 | ralrimiv 3106 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ {𝑌} (◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)) |
18 | | cnvimass 5978 |
. . . . . . . . . 10
⊢ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ dom 𝐹 |
19 | | f1odm 6704 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1-onto→𝑌 → dom 𝐹 = 𝑋) |
20 | 2, 19 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → dom 𝐹 = 𝑋) |
21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → dom 𝐹 = 𝑋) |
22 | 18, 21 | sseqtrid 3969 |
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ 𝑋) |
23 | | sseqin2 4146 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ⊆ 𝑋 ↔ (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) |
24 | 22, 23 | sylib 217 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) |
25 | 2 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → 𝐹:𝑋–1-1-onto→𝑌) |
26 | | f1ofn 6701 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹 Fn 𝑋) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → 𝐹 Fn 𝑋) |
28 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}))) |
29 | 27, 28 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}))) |
30 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
31 | 30 | biantrurd 532 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}))) |
32 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋⟶𝑌) |
33 | 32 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ 𝑌) |
34 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐹‘𝑧) → (𝑦𝑆𝑥 ↔ (𝐹‘𝑧)𝑆𝑥)) |
35 | 34 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑧) → (¬ 𝑦𝑆𝑥 ↔ ¬ (𝐹‘𝑧)𝑆𝑥)) |
36 | 35 | elrab3 3618 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ 𝑌 → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ (𝐹‘𝑧)𝑆𝑥)) |
37 | 33, 36 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ (𝐹‘𝑧)𝑆𝑥)) |
38 | | simpll3 1212 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) |
39 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
40 | | f1of 6700 |
. . . . . . . . . . . . . . . . 17
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
41 | 2, 39, 40 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ◡𝐹:𝑌⟶𝑋) |
42 | 41 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
43 | 42 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (◡𝐹‘𝑥) ∈ 𝑋) |
44 | | isorel 7177 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) ∧ (𝑧 ∈ 𝑋 ∧ (◡𝐹‘𝑥) ∈ 𝑋)) → (𝑧𝑅(◡𝐹‘𝑥) ↔ (𝐹‘𝑧)𝑆(𝐹‘(◡𝐹‘𝑥)))) |
45 | 38, 30, 43, 44 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧𝑅(◡𝐹‘𝑥) ↔ (𝐹‘𝑧)𝑆(𝐹‘(◡𝐹‘𝑥)))) |
46 | | f1ocnvfv2 7130 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
47 | 2, 46 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
49 | 48 | breq2d 5082 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧)𝑆(𝐹‘(◡𝐹‘𝑥)) ↔ (𝐹‘𝑧)𝑆𝑥)) |
50 | 45, 49 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧𝑅(◡𝐹‘𝑥) ↔ (𝐹‘𝑧)𝑆𝑥)) |
51 | 50 | notbid 317 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (¬ 𝑧𝑅(◡𝐹‘𝑥) ↔ ¬ (𝐹‘𝑧)𝑆𝑥)) |
52 | 37, 51 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ↔ ¬ 𝑧𝑅(◡𝐹‘𝑥))) |
53 | 29, 31, 52 | 3bitr2d 306 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ↔ ¬ 𝑧𝑅(◡𝐹‘𝑥))) |
54 | 53 | rabbi2dva 4148 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) = {𝑧 ∈ 𝑋 ∣ ¬ 𝑧𝑅(◡𝐹‘𝑥)}) |
55 | 24, 54 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) = {𝑧 ∈ 𝑋 ∣ ¬ 𝑧𝑅(◡𝐹‘𝑥)}) |
56 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → 𝑅 ∈ 𝑉) |
57 | 7 | ordtopn1 22253 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑋) → {𝑧 ∈ 𝑋 ∣ ¬ 𝑧𝑅(◡𝐹‘𝑥)} ∈ (ordTop‘𝑅)) |
58 | 56, 42, 57 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → {𝑧 ∈ 𝑋 ∣ ¬ 𝑧𝑅(◡𝐹‘𝑥)} ∈ (ordTop‘𝑅)) |
59 | 55, 58 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅)) |
60 | 59 | ralrimiva 3107 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅)) |
61 | | ordthmeo.2 |
. . . . . . . . . 10
⊢ 𝑌 = dom 𝑆 |
62 | | dmexg 7724 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑊 → dom 𝑆 ∈ V) |
63 | 61, 62 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝑊 → 𝑌 ∈ V) |
64 | 63 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝑌 ∈ V) |
65 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝑌 ∈ V → {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V) |
66 | 64, 65 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V) |
67 | 66 | ralrimivw 3108 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥 ∈ 𝑌 {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V) |
68 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) = (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) |
69 | | imaeq2 5954 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} → (◡𝐹 “ 𝑧) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})) |
70 | 69 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑧 = {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} → ((◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅))) |
71 | 68, 70 | ralrnmptw 6952 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑌 {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥} ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅))) |
72 | 67, 71 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∈ (ordTop‘𝑅))) |
73 | 60, 72 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)) |
74 | | cnvimass 5978 |
. . . . . . . . . 10
⊢ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ dom 𝐹 |
75 | 74, 21 | sseqtrid 3969 |
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ 𝑋) |
76 | | sseqin2 4146 |
. . . . . . . . 9
⊢ ((◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ⊆ 𝑋 ↔ (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) |
77 | 75, 76 | sylib 217 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) |
78 | | elpreima 6917 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) |
79 | 27, 78 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) |
80 | 30 | biantrurd 532 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ (𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) |
81 | | breq2 5074 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐹‘𝑧) → (𝑥𝑆𝑦 ↔ 𝑥𝑆(𝐹‘𝑧))) |
82 | 81 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑧) → (¬ 𝑥𝑆𝑦 ↔ ¬ 𝑥𝑆(𝐹‘𝑧))) |
83 | 82 | elrab3 3618 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑧) ∈ 𝑌 → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ 𝑥𝑆(𝐹‘𝑧))) |
84 | 33, 83 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ 𝑥𝑆(𝐹‘𝑧))) |
85 | | isorel 7177 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌) ∧ ((◡𝐹‘𝑥) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((◡𝐹‘𝑥)𝑅𝑧 ↔ (𝐹‘(◡𝐹‘𝑥))𝑆(𝐹‘𝑧))) |
86 | 38, 43, 30, 85 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((◡𝐹‘𝑥)𝑅𝑧 ↔ (𝐹‘(◡𝐹‘𝑥))𝑆(𝐹‘𝑧))) |
87 | 48 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘(◡𝐹‘𝑥))𝑆(𝐹‘𝑧) ↔ 𝑥𝑆(𝐹‘𝑧))) |
88 | 86, 87 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((◡𝐹‘𝑥)𝑅𝑧 ↔ 𝑥𝑆(𝐹‘𝑧))) |
89 | 88 | notbid 317 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (¬ (◡𝐹‘𝑥)𝑅𝑧 ↔ ¬ 𝑥𝑆(𝐹‘𝑧))) |
90 | 84, 89 | bitr4d 281 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ↔ ¬ (◡𝐹‘𝑥)𝑅𝑧)) |
91 | 79, 80, 90 | 3bitr2d 306 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ↔ ¬ (◡𝐹‘𝑥)𝑅𝑧)) |
92 | 91 | rabbi2dva 4148 |
. . . . . . . 8
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 ∩ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) = {𝑧 ∈ 𝑋 ∣ ¬ (◡𝐹‘𝑥)𝑅𝑧}) |
93 | 77, 92 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) = {𝑧 ∈ 𝑋 ∣ ¬ (◡𝐹‘𝑥)𝑅𝑧}) |
94 | 7 | ordtopn2 22254 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ (◡𝐹‘𝑥) ∈ 𝑋) → {𝑧 ∈ 𝑋 ∣ ¬ (◡𝐹‘𝑥)𝑅𝑧} ∈ (ordTop‘𝑅)) |
95 | 56, 42, 94 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → {𝑧 ∈ 𝑋 ∣ ¬ (◡𝐹‘𝑥)𝑅𝑧} ∈ (ordTop‘𝑅)) |
96 | 93, 95 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅)) |
97 | 96 | ralrimiva 3107 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅)) |
98 | | rabexg 5250 |
. . . . . . . 8
⊢ (𝑌 ∈ V → {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V) |
99 | 64, 98 | syl 17 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V) |
100 | 99 | ralrimivw 3108 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑥 ∈ 𝑌 {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V) |
101 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) = (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) |
102 | | imaeq2 5954 |
. . . . . . . 8
⊢ (𝑧 = {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} → (◡𝐹 “ 𝑧) = (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})) |
103 | 102 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑧 = {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} → ((◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅))) |
104 | 101, 103 | ralrnmptw 6952 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑌 {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦} ∈ V → (∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅))) |
105 | 100, 104 | syl 17 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ ∀𝑥 ∈ 𝑌 (◡𝐹 “ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) ∈ (ordTop‘𝑅))) |
106 | 97, 105 | mpbird 256 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)) |
107 | | ralunb 4121 |
. . . 4
⊢
(∀𝑧 ∈
(ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ (∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅))) |
108 | 73, 106, 107 | sylanbrc 582 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)) |
109 | | ralunb 4121 |
. . 3
⊢
(∀𝑧 ∈
({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ↔ (∀𝑧 ∈ {𝑌} (◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅) ∧ ∀𝑧 ∈ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅))) |
110 | 17, 108, 109 | sylanbrc 582 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ∀𝑧 ∈ ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)) |
111 | | eqid 2738 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) = ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) |
112 | | eqid 2738 |
. . . . . . 7
⊢ ran
(𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) = ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}) |
113 | 61, 111, 112 | ordtuni 22249 |
. . . . . 6
⊢ (𝑆 ∈ 𝑊 → 𝑌 = ∪ ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))) |
114 | 113, 63 | eqeltrrd 2840 |
. . . . 5
⊢ (𝑆 ∈ 𝑊 → ∪ ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V) |
115 | | uniexb 7592 |
. . . . 5
⊢ (({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V ↔ ∪ ({𝑌}
∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V) |
116 | 114, 115 | sylibr 233 |
. . . 4
⊢ (𝑆 ∈ 𝑊 → ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V) |
117 | 116 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦}))) ∈ V) |
118 | 61, 111, 112 | ordtval 22248 |
. . . 4
⊢ (𝑆 ∈ 𝑊 → (ordTop‘𝑆) = (topGen‘(fi‘({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))))) |
119 | 118 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑆) = (topGen‘(fi‘({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))))) |
120 | 61 | ordttopon 22252 |
. . . 4
⊢ (𝑆 ∈ 𝑊 → (ordTop‘𝑆) ∈ (TopOn‘𝑌)) |
121 | 120 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (ordTop‘𝑆) ∈ (TopOn‘𝑌)) |
122 | 9, 117, 119, 121 | subbascn 22313 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → (𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ ({𝑌} ∪ (ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑦𝑆𝑥}) ∪ ran (𝑥 ∈ 𝑌 ↦ {𝑦 ∈ 𝑌 ∣ ¬ 𝑥𝑆𝑦})))(◡𝐹 “ 𝑧) ∈ (ordTop‘𝑅)))) |
123 | 4, 110, 122 | mpbir2and 709 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐹 Isom 𝑅, 𝑆 (𝑋, 𝑌)) → 𝐹 ∈ ((ordTop‘𝑅) Cn (ordTop‘𝑆))) |