Step | Hyp | Ref
| Expression |
1 | | isof1o 7316 |
. . . 4
β’ (πΉ Isom π
, π (π, π) β πΉ:πβ1-1-ontoβπ) |
2 | 1 | 3ad2ant3 1135 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β πΉ:πβ1-1-ontoβπ) |
3 | | f1of 6830 |
. . 3
β’ (πΉ:πβ1-1-ontoβπ β πΉ:πβΆπ) |
4 | 2, 3 | syl 17 |
. 2
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β πΉ:πβΆπ) |
5 | | fimacnv 6736 |
. . . . . . 7
β’ (πΉ:πβΆπ β (β‘πΉ β π) = π) |
6 | 4, 5 | syl 17 |
. . . . . 6
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (β‘πΉ β π) = π) |
7 | | ordthmeo.1 |
. . . . . . . . 9
β’ π = dom π
|
8 | 7 | ordttopon 22688 |
. . . . . . . 8
β’ (π
β π β (ordTopβπ
) β (TopOnβπ)) |
9 | 8 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (ordTopβπ
) β (TopOnβπ)) |
10 | | toponmax 22419 |
. . . . . . 7
β’
((ordTopβπ
)
β (TopOnβπ)
β π β
(ordTopβπ
)) |
11 | 9, 10 | syl 17 |
. . . . . 6
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β π β (ordTopβπ
)) |
12 | 6, 11 | eqeltrd 2833 |
. . . . 5
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (β‘πΉ β π) β (ordTopβπ
)) |
13 | | elsni 4644 |
. . . . . . 7
β’ (π§ β {π} β π§ = π) |
14 | 13 | imaeq2d 6057 |
. . . . . 6
β’ (π§ β {π} β (β‘πΉ β π§) = (β‘πΉ β π)) |
15 | 14 | eleq1d 2818 |
. . . . 5
β’ (π§ β {π} β ((β‘πΉ β π§) β (ordTopβπ
) β (β‘πΉ β π) β (ordTopβπ
))) |
16 | 12, 15 | syl5ibrcom 246 |
. . . 4
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (π§ β {π} β (β‘πΉ β π§) β (ordTopβπ
))) |
17 | 16 | ralrimiv 3145 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ§ β {π} (β‘πΉ β π§) β (ordTopβπ
)) |
18 | | cnvimass 6077 |
. . . . . . . . . 10
β’ (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β dom πΉ |
19 | | f1odm 6834 |
. . . . . . . . . . . 12
β’ (πΉ:πβ1-1-ontoβπ β dom πΉ = π) |
20 | 2, 19 | syl 17 |
. . . . . . . . . . 11
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β dom πΉ = π) |
21 | 20 | adantr 481 |
. . . . . . . . . 10
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β dom πΉ = π) |
22 | 18, 21 | sseqtrid 4033 |
. . . . . . . . 9
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β π) |
23 | | sseqin2 4214 |
. . . . . . . . 9
β’ ((β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β π β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) = (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) |
24 | 22, 23 | sylib 217 |
. . . . . . . 8
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) = (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) |
25 | 2 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β πΉ:πβ1-1-ontoβπ) |
26 | | f1ofn 6831 |
. . . . . . . . . . . 12
β’ (πΉ:πβ1-1-ontoβπ β πΉ Fn π) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β πΉ Fn π) |
28 | | elpreima 7056 |
. . . . . . . . . . 11
β’ (πΉ Fn π β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯}))) |
29 | 27, 28 | syl 17 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯}))) |
30 | | simpr 485 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β π§ β π) |
31 | 30 | biantrurd 533 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯} β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯}))) |
32 | 4 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β πΉ:πβΆπ) |
33 | 32 | ffvelcdmda 7083 |
. . . . . . . . . . . 12
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (πΉβπ§) β π) |
34 | | breq1 5150 |
. . . . . . . . . . . . . 14
β’ (π¦ = (πΉβπ§) β (π¦ππ₯ β (πΉβπ§)ππ₯)) |
35 | 34 | notbid 317 |
. . . . . . . . . . . . 13
β’ (π¦ = (πΉβπ§) β (Β¬ π¦ππ₯ β Β¬ (πΉβπ§)ππ₯)) |
36 | 35 | elrab3 3683 |
. . . . . . . . . . . 12
β’ ((πΉβπ§) β π β ((πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯} β Β¬ (πΉβπ§)ππ₯)) |
37 | 33, 36 | syl 17 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯} β Β¬ (πΉβπ§)ππ₯)) |
38 | | simpll3 1214 |
. . . . . . . . . . . . . 14
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β πΉ Isom π
, π (π, π)) |
39 | | f1ocnv 6842 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ:πβ1-1-ontoβπ β β‘πΉ:πβ1-1-ontoβπ) |
40 | | f1of 6830 |
. . . . . . . . . . . . . . . . 17
β’ (β‘πΉ:πβ1-1-ontoβπ β β‘πΉ:πβΆπ) |
41 | 2, 39, 40 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β β‘πΉ:πβΆπ) |
42 | 41 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . 15
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉβπ₯) β π) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (β‘πΉβπ₯) β π) |
44 | | isorel 7319 |
. . . . . . . . . . . . . 14
β’ ((πΉ Isom π
, π (π, π) β§ (π§ β π β§ (β‘πΉβπ₯) β π)) β (π§π
(β‘πΉβπ₯) β (πΉβπ§)π(πΉβ(β‘πΉβπ₯)))) |
45 | 38, 30, 43, 44 | syl12anc 835 |
. . . . . . . . . . . . 13
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§π
(β‘πΉβπ₯) β (πΉβπ§)π(πΉβ(β‘πΉβπ₯)))) |
46 | | f1ocnvfv2 7271 |
. . . . . . . . . . . . . . . 16
β’ ((πΉ:πβ1-1-ontoβπ β§ π₯ β π) β (πΉβ(β‘πΉβπ₯)) = π₯) |
47 | 2, 46 | sylan 580 |
. . . . . . . . . . . . . . 15
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (πΉβ(β‘πΉβπ₯)) = π₯) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (πΉβ(β‘πΉβπ₯)) = π₯) |
49 | 48 | breq2d 5159 |
. . . . . . . . . . . . 13
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§)π(πΉβ(β‘πΉβπ₯)) β (πΉβπ§)ππ₯)) |
50 | 45, 49 | bitrd 278 |
. . . . . . . . . . . 12
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§π
(β‘πΉβπ₯) β (πΉβπ§)ππ₯)) |
51 | 50 | notbid 317 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (Β¬ π§π
(β‘πΉβπ₯) β Β¬ (πΉβπ§)ππ₯)) |
52 | 37, 51 | bitr4d 281 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π¦ππ₯} β Β¬ π§π
(β‘πΉβπ₯))) |
53 | 29, 31, 52 | 3bitr2d 306 |
. . . . . . . . 9
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β Β¬ π§π
(β‘πΉβπ₯))) |
54 | 53 | rabbi2dva 4216 |
. . . . . . . 8
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) = {π§ β π β£ Β¬ π§π
(β‘πΉβπ₯)}) |
55 | 24, 54 | eqtr3d 2774 |
. . . . . . 7
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) = {π§ β π β£ Β¬ π§π
(β‘πΉβπ₯)}) |
56 | | simpl1 1191 |
. . . . . . . 8
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β π
β π) |
57 | 7 | ordtopn1 22689 |
. . . . . . . 8
β’ ((π
β π β§ (β‘πΉβπ₯) β π) β {π§ β π β£ Β¬ π§π
(β‘πΉβπ₯)} β (ordTopβπ
)) |
58 | 56, 42, 57 | syl2anc 584 |
. . . . . . 7
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β {π§ β π β£ Β¬ π§π
(β‘πΉβπ₯)} β (ordTopβπ
)) |
59 | 55, 58 | eqeltrd 2833 |
. . . . . 6
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (ordTopβπ
)) |
60 | 59 | ralrimiva 3146 |
. . . . 5
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (ordTopβπ
)) |
61 | | ordthmeo.2 |
. . . . . . . . . 10
β’ π = dom π |
62 | | dmexg 7890 |
. . . . . . . . . 10
β’ (π β π β dom π β V) |
63 | 61, 62 | eqeltrid 2837 |
. . . . . . . . 9
β’ (π β π β π β V) |
64 | 63 | 3ad2ant2 1134 |
. . . . . . . 8
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β π β V) |
65 | | rabexg 5330 |
. . . . . . . 8
β’ (π β V β {π¦ β π β£ Β¬ π¦ππ₯} β V) |
66 | 64, 65 | syl 17 |
. . . . . . 7
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β {π¦ β π β£ Β¬ π¦ππ₯} β V) |
67 | 66 | ralrimivw 3150 |
. . . . . 6
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ₯ β π {π¦ β π β£ Β¬ π¦ππ₯} β V) |
68 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) = (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) |
69 | | imaeq2 6053 |
. . . . . . . 8
β’ (π§ = {π¦ β π β£ Β¬ π¦ππ₯} β (β‘πΉ β π§) = (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯})) |
70 | 69 | eleq1d 2818 |
. . . . . . 7
β’ (π§ = {π¦ β π β£ Β¬ π¦ππ₯} β ((β‘πΉ β π§) β (ordTopβπ
) β (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (ordTopβπ
))) |
71 | 68, 70 | ralrnmptw 7092 |
. . . . . 6
β’
(βπ₯ β
π {π¦ β π β£ Β¬ π¦ππ₯} β V β (βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯})(β‘πΉ β π§) β (ordTopβπ
) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (ordTopβπ
))) |
72 | 67, 71 | syl 17 |
. . . . 5
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯})(β‘πΉ β π§) β (ordTopβπ
) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π¦ππ₯}) β (ordTopβπ
))) |
73 | 60, 72 | mpbird 256 |
. . . 4
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯})(β‘πΉ β π§) β (ordTopβπ
)) |
74 | | cnvimass 6077 |
. . . . . . . . . 10
β’ (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β dom πΉ |
75 | 74, 21 | sseqtrid 4033 |
. . . . . . . . 9
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β π) |
76 | | sseqin2 4214 |
. . . . . . . . 9
β’ ((β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β π β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) = (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) |
77 | 75, 76 | sylib 217 |
. . . . . . . 8
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) = (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) |
78 | | elpreima 7056 |
. . . . . . . . . . 11
β’ (πΉ Fn π β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦}))) |
79 | 27, 78 | syl 17 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦}))) |
80 | 30 | biantrurd 533 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦} β (π§ β π β§ (πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦}))) |
81 | | breq2 5151 |
. . . . . . . . . . . . . 14
β’ (π¦ = (πΉβπ§) β (π₯ππ¦ β π₯π(πΉβπ§))) |
82 | 81 | notbid 317 |
. . . . . . . . . . . . 13
β’ (π¦ = (πΉβπ§) β (Β¬ π₯ππ¦ β Β¬ π₯π(πΉβπ§))) |
83 | 82 | elrab3 3683 |
. . . . . . . . . . . 12
β’ ((πΉβπ§) β π β ((πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦} β Β¬ π₯π(πΉβπ§))) |
84 | 33, 83 | syl 17 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦} β Β¬ π₯π(πΉβπ§))) |
85 | | isorel 7319 |
. . . . . . . . . . . . . 14
β’ ((πΉ Isom π
, π (π, π) β§ ((β‘πΉβπ₯) β π β§ π§ β π)) β ((β‘πΉβπ₯)π
π§ β (πΉβ(β‘πΉβπ₯))π(πΉβπ§))) |
86 | 38, 43, 30, 85 | syl12anc 835 |
. . . . . . . . . . . . 13
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((β‘πΉβπ₯)π
π§ β (πΉβ(β‘πΉβπ₯))π(πΉβπ§))) |
87 | 48 | breq1d 5157 |
. . . . . . . . . . . . 13
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβ(β‘πΉβπ₯))π(πΉβπ§) β π₯π(πΉβπ§))) |
88 | 86, 87 | bitrd 278 |
. . . . . . . . . . . 12
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((β‘πΉβπ₯)π
π§ β π₯π(πΉβπ§))) |
89 | 88 | notbid 317 |
. . . . . . . . . . 11
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (Β¬ (β‘πΉβπ₯)π
π§ β Β¬ π₯π(πΉβπ§))) |
90 | 84, 89 | bitr4d 281 |
. . . . . . . . . 10
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β ((πΉβπ§) β {π¦ β π β£ Β¬ π₯ππ¦} β Β¬ (β‘πΉβπ₯)π
π§)) |
91 | 79, 80, 90 | 3bitr2d 306 |
. . . . . . . . 9
β’ ((((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β§ π§ β π) β (π§ β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β Β¬ (β‘πΉβπ₯)π
π§)) |
92 | 91 | rabbi2dva 4216 |
. . . . . . . 8
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (π β© (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) = {π§ β π β£ Β¬ (β‘πΉβπ₯)π
π§}) |
93 | 77, 92 | eqtr3d 2774 |
. . . . . . 7
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) = {π§ β π β£ Β¬ (β‘πΉβπ₯)π
π§}) |
94 | 7 | ordtopn2 22690 |
. . . . . . . 8
β’ ((π
β π β§ (β‘πΉβπ₯) β π) β {π§ β π β£ Β¬ (β‘πΉβπ₯)π
π§} β (ordTopβπ
)) |
95 | 56, 42, 94 | syl2anc 584 |
. . . . . . 7
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β {π§ β π β£ Β¬ (β‘πΉβπ₯)π
π§} β (ordTopβπ
)) |
96 | 93, 95 | eqeltrd 2833 |
. . . . . 6
β’ (((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β§ π₯ β π) β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (ordTopβπ
)) |
97 | 96 | ralrimiva 3146 |
. . . . 5
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (ordTopβπ
)) |
98 | | rabexg 5330 |
. . . . . . . 8
β’ (π β V β {π¦ β π β£ Β¬ π₯ππ¦} β V) |
99 | 64, 98 | syl 17 |
. . . . . . 7
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β {π¦ β π β£ Β¬ π₯ππ¦} β V) |
100 | 99 | ralrimivw 3150 |
. . . . . 6
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ₯ β π {π¦ β π β£ Β¬ π₯ππ¦} β V) |
101 | | eqid 2732 |
. . . . . . 7
β’ (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}) = (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}) |
102 | | imaeq2 6053 |
. . . . . . . 8
β’ (π§ = {π¦ β π β£ Β¬ π₯ππ¦} β (β‘πΉ β π§) = (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦})) |
103 | 102 | eleq1d 2818 |
. . . . . . 7
β’ (π§ = {π¦ β π β£ Β¬ π₯ππ¦} β ((β‘πΉ β π§) β (ordTopβπ
) β (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (ordTopβπ
))) |
104 | 101, 103 | ralrnmptw 7092 |
. . . . . 6
β’
(βπ₯ β
π {π¦ β π β£ Β¬ π₯ππ¦} β V β (βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})(β‘πΉ β π§) β (ordTopβπ
) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (ordTopβπ
))) |
105 | 100, 104 | syl 17 |
. . . . 5
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})(β‘πΉ β π§) β (ordTopβπ
) β βπ₯ β π (β‘πΉ β {π¦ β π β£ Β¬ π₯ππ¦}) β (ordTopβπ
))) |
106 | 97, 105 | mpbird 256 |
. . . 4
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})(β‘πΉ β π§) β (ordTopβπ
)) |
107 | | ralunb 4190 |
. . . 4
β’
(βπ§ β
(ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))(β‘πΉ β π§) β (ordTopβπ
) β (βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯})(β‘πΉ β π§) β (ordTopβπ
) β§ βπ§ β ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})(β‘πΉ β π§) β (ordTopβπ
))) |
108 | 73, 106, 107 | sylanbrc 583 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ§ β (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))(β‘πΉ β π§) β (ordTopβπ
)) |
109 | | ralunb 4190 |
. . 3
β’
(βπ§ β
({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))(β‘πΉ β π§) β (ordTopβπ
) β (βπ§ β {π} (β‘πΉ β π§) β (ordTopβπ
) β§ βπ§ β (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))(β‘πΉ β π§) β (ordTopβπ
))) |
110 | 17, 108, 109 | sylanbrc 583 |
. 2
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β βπ§ β ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))(β‘πΉ β π§) β (ordTopβπ
)) |
111 | | eqid 2732 |
. . . . . . 7
β’ ran
(π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) |
112 | | eqid 2732 |
. . . . . . 7
β’ ran
(π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}) = ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}) |
113 | 61, 111, 112 | ordtuni 22685 |
. . . . . 6
β’ (π β π β π = βͺ ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))) |
114 | 113, 63 | eqeltrrd 2834 |
. . . . 5
β’ (π β π β βͺ ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))) β V) |
115 | | uniexb 7747 |
. . . . 5
β’ (({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))) β V β βͺ ({π}
βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))) β V) |
116 | 114, 115 | sylibr 233 |
. . . 4
β’ (π β π β ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))) β V) |
117 | 116 | 3ad2ant2 1134 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦}))) β V) |
118 | 61, 111, 112 | ordtval 22684 |
. . . 4
β’ (π β π β (ordTopβπ) = (topGenβ(fiβ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))))) |
119 | 118 | 3ad2ant2 1134 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (ordTopβπ) = (topGenβ(fiβ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))))) |
120 | 61 | ordttopon 22688 |
. . . 4
β’ (π β π β (ordTopβπ) β (TopOnβπ)) |
121 | 120 | 3ad2ant2 1134 |
. . 3
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (ordTopβπ) β (TopOnβπ)) |
122 | 9, 117, 119, 121 | subbascn 22749 |
. 2
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β (πΉ β ((ordTopβπ
) Cn (ordTopβπ)) β (πΉ:πβΆπ β§ βπ§ β ({π} βͺ (ran (π₯ β π β¦ {π¦ β π β£ Β¬ π¦ππ₯}) βͺ ran (π₯ β π β¦ {π¦ β π β£ Β¬ π₯ππ¦})))(β‘πΉ β π§) β (ordTopβπ
)))) |
123 | 4, 110, 122 | mpbir2and 711 |
1
β’ ((π
β π β§ π β π β§ πΉ Isom π
, π (π, π)) β πΉ β ((ordTopβπ
) Cn (ordTopβπ))) |