| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nnuz 12922 | . 2
⊢ ℕ =
(ℤ≥‘1) | 
| 2 |  | 1zzd 12650 | . 2
⊢ (𝜑 → 1 ∈
ℤ) | 
| 3 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | 
| 4 |  | readdcl 11239 | . . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | 
| 5 | 4 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) | 
| 6 |  | itg2mono.3 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | 
| 7 |  | rge0ssre 13497 | . . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ | 
| 8 |  | fss 6751 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘𝑛):ℝ⟶ℝ) | 
| 9 | 6, 7, 8 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶ℝ) | 
| 10 |  | itg2mono.8 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 ∈ dom
∫1) | 
| 11 |  | itg2mono.7 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑇 ∈ (0(,)1)) | 
| 12 |  | 0xr 11309 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ* | 
| 13 |  | 1xr 11321 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ* | 
| 14 |  | elioo2 13429 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑇 ∈ (0(,)1) ↔ (𝑇 ∈ ℝ ∧ 0 <
𝑇 ∧ 𝑇 < 1))) | 
| 15 | 12, 13, 14 | mp2an 692 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ (0(,)1) ↔ (𝑇 ∈ ℝ ∧ 0 <
𝑇 ∧ 𝑇 < 1)) | 
| 16 | 11, 15 | sylib 218 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1)) | 
| 17 | 16 | simp1d 1142 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 18 | 17 | renegcld 11691 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → -𝑇 ∈ ℝ) | 
| 19 | 10, 18 | i1fmulc 25739 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ × {-𝑇}) ∘f ·
𝐻) ∈ dom
∫1) | 
| 20 | 19 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) ∈ dom
∫1) | 
| 21 |  | i1ff 25712 | . . . . . . . . . . . . . . . 16
⊢
(((ℝ × {-𝑇}) ∘f · 𝐻) ∈ dom ∫1
→ ((ℝ × {-𝑇}) ∘f · 𝐻):ℝ⟶ℝ) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻):ℝ⟶ℝ) | 
| 23 |  | reex 11247 | . . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V | 
| 24 | 23 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ∈
V) | 
| 25 |  | inidm 4226 | . . . . . . . . . . . . . . 15
⊢ (ℝ
∩ ℝ) = ℝ | 
| 26 | 5, 9, 22, 24, 24, 25 | off 7716 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)):ℝ⟶ℝ) | 
| 27 | 26 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)):ℝ⟶ℝ) | 
| 28 | 27 | ffnd 6736 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) Fn
ℝ) | 
| 29 |  | elpreima 7077 | . . . . . . . . . . . 12
⊢ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) Fn ℝ
→ (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (𝑥
∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0)))) | 
| 30 | 28, 29 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (𝑥
∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0)))) | 
| 31 | 3, 30 | mpbirand 707 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0))) | 
| 32 |  | elioomnf 13485 | . . . . . . . . . . . 12
⊢ (0 ∈
ℝ* → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
((((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0))) | 
| 33 | 12, 32 | ax-mp 5 | . . . . . . . . . . 11
⊢ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
((((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0)) | 
| 34 | 26 | ffvelcdmda 7103 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
ℝ) | 
| 35 | 34 | biantrurd 532 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0))) | 
| 36 | 33, 35 | bitr4id 290 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
(((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) < 0)) | 
| 37 | 6 | ffnd 6736 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) Fn ℝ) | 
| 38 | 22 | ffnd 6736 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) Fn
ℝ) | 
| 39 |  | eqidd 2737 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) | 
| 40 | 18 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -𝑇 ∈ ℝ) | 
| 41 |  | i1ff 25712 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 ∈ dom ∫1
→ 𝐻:ℝ⟶ℝ) | 
| 42 | 10, 41 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻:ℝ⟶ℝ) | 
| 43 | 42 | ffnd 6736 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐻 Fn ℝ) | 
| 44 | 43 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐻 Fn ℝ) | 
| 45 |  | eqidd 2737 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) = (𝐻‘𝑥)) | 
| 46 | 24, 40, 44, 45 | ofc1 7726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((ℝ ×
{-𝑇}) ∘f
· 𝐻)‘𝑥) = (-𝑇 · (𝐻‘𝑥))) | 
| 47 | 17 | recnd 11290 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ ℂ) | 
| 48 | 47 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) | 
| 49 | 42 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) | 
| 50 | 49 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) | 
| 51 | 50 | recnd 11290 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℂ) | 
| 52 | 48, 51 | mulneg1d 11717 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (-𝑇 · (𝐻‘𝑥)) = -(𝑇 · (𝐻‘𝑥))) | 
| 53 | 46, 52 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((ℝ ×
{-𝑇}) ∘f
· 𝐻)‘𝑥) = -(𝑇 · (𝐻‘𝑥))) | 
| 54 | 37, 38, 24, 24, 25, 39, 53 | ofval 7709 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) = (((𝐹‘𝑛)‘𝑥) + -(𝑇 · (𝐻‘𝑥)))) | 
| 55 | 9 | ffvelcdmda 7103 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) | 
| 56 | 55 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) | 
| 57 | 17 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) | 
| 58 | 57, 49 | remulcld 11292 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 59 | 58 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 60 | 59 | recnd 11290 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℂ) | 
| 61 | 56, 60 | negsubd 11627 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛)‘𝑥) + -(𝑇 · (𝐻‘𝑥))) = (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥)))) | 
| 62 | 54, 61 | eqtrd 2776 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) = (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥)))) | 
| 63 | 62 | breq1d 5152 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥))) < 0)) | 
| 64 |  | 0red 11265 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) | 
| 65 | 55, 59, 64 | ltsubaddd 11860 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥))) < 0 ↔ ((𝐹‘𝑛)‘𝑥) < (0 + (𝑇 · (𝐻‘𝑥))))) | 
| 66 | 60 | addlidd 11463 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 + (𝑇 · (𝐻‘𝑥))) = (𝑇 · (𝐻‘𝑥))) | 
| 67 | 66 | breq2d 5154 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛)‘𝑥) < (0 + (𝑇 · (𝐻‘𝑥))) ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) | 
| 68 | 63, 65, 67 | 3bitrd 305 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) | 
| 69 | 31, 36, 68 | 3bitrd 305 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) | 
| 70 | 69 | notbid 318 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ ¬ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) | 
| 71 |  | eldif 3960 | . . . . . . . . . 10
⊢ (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ (𝑥
∈ ℝ ∧ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) | 
| 72 | 71 | baib 535 | . . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) | 
| 73 | 72 | adantl 481 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) | 
| 74 | 59, 55 | lenltd 11408 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ ¬ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) | 
| 75 | 70, 73, 74 | 3bitr4d 311 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ (𝑇
· (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥))) | 
| 76 | 75 | rabbi2dva 4225 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∩
(ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) = {𝑥
∈ ℝ ∣ (𝑇
· (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) | 
| 77 |  | rembl 25576 | . . . . . . 7
⊢ ℝ
∈ dom vol | 
| 78 |  | itg2mono.2 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) | 
| 79 |  | i1fmbf 25711 | . . . . . . . . . . 11
⊢
(((ℝ × {-𝑇}) ∘f · 𝐻) ∈ dom ∫1
→ ((ℝ × {-𝑇}) ∘f · 𝐻) ∈ MblFn) | 
| 80 | 20, 79 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) ∈
MblFn) | 
| 81 | 78, 80 | mbfadd 25697 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) ∈
MblFn) | 
| 82 |  | mbfima 25666 | . . . . . . . . 9
⊢ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) ∈ MblFn
∧ ((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻)):ℝ⟶ℝ) → (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol) | 
| 83 | 81, 26, 82 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol) | 
| 84 |  | cmmbl 25570 | . . . . . . . 8
⊢ ((◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol → (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) | 
| 85 | 83, 84 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∖
(◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) | 
| 86 |  | inmbl 25578 | . . . . . . 7
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) → (ℝ ∩ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) ∈ dom vol) | 
| 87 | 77, 85, 86 | sylancr 587 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∩
(ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) ∈ dom vol) | 
| 88 | 76, 87 | eqeltrrd 2841 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} ∈ dom vol) | 
| 89 |  | itg2mono.11 | . . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) | 
| 90 | 88, 89 | fmptd 7133 | . . . 4
⊢ (𝜑 → 𝐴:ℕ⟶dom vol) | 
| 91 |  | itg2mono.4 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) | 
| 92 | 91 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) | 
| 93 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) | 
| 94 |  | fvoveq1 7455 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1))) | 
| 95 | 93, 94 | breq12d 5155 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)) ↔ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1)))) | 
| 96 | 95 | cbvralvw 3236 | . . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) ∘r ≤
(𝐹‘(𝑛 + 1)) ↔ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) | 
| 97 | 92, 96 | sylib 218 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) | 
| 98 | 97 | r19.21bi 3250 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) | 
| 99 | 6 | ralrimiva 3145 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | 
| 100 | 93 | feq1d 6719 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘𝑗):ℝ⟶(0[,)+∞))) | 
| 101 | 100 | cbvralvw 3236 | . . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
↔ ∀𝑗 ∈
ℕ (𝐹‘𝑗):ℝ⟶(0[,)+∞)) | 
| 102 | 99, 101 | sylib 218 | . . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝐹‘𝑗):ℝ⟶(0[,)+∞)) | 
| 103 | 102 | r19.21bi 3250 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶(0[,)+∞)) | 
| 104 | 103 | ffnd 6736 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) Fn ℝ) | 
| 105 |  | peano2nn 12279 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) | 
| 106 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑗 + 1))) | 
| 107 | 106 | feq1d 6719 | . . . . . . . . . . . . 13
⊢ (𝑛 = (𝑗 + 1) → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞))) | 
| 108 | 107 | rspccva 3620 | . . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
∧ (𝑗 + 1) ∈
ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞)) | 
| 109 | 99, 105, 108 | syl2an 596 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞)) | 
| 110 | 109 | ffnd 6736 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) Fn ℝ) | 
| 111 | 23 | a1i 11 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℝ ∈
V) | 
| 112 |  | eqidd 2737 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) = ((𝐹‘𝑗)‘𝑥)) | 
| 113 |  | eqidd 2737 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑗 + 1))‘𝑥) = ((𝐹‘(𝑗 + 1))‘𝑥)) | 
| 114 | 104, 110,
111, 111, 25, 112, 113 | ofrfval 7708 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1)) ↔ ∀𝑥 ∈ ℝ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) | 
| 115 | 98, 114 | mpbid 232 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) | 
| 116 | 115 | r19.21bi 3250 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) | 
| 117 | 17 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) | 
| 118 | 42 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐻:ℝ⟶ℝ) | 
| 119 | 118 | ffvelcdmda 7103 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) | 
| 120 | 117, 119 | remulcld 11292 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 121 |  | fss 6751 | . . . . . . . . . 10
⊢ (((𝐹‘𝑗):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘𝑗):ℝ⟶ℝ) | 
| 122 | 103, 7, 121 | sylancl 586 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶ℝ) | 
| 123 | 122 | ffvelcdmda 7103 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) | 
| 124 |  | fss 6751 | . . . . . . . . . 10
⊢ (((𝐹‘(𝑗 + 1)):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘(𝑗 +
1)):ℝ⟶ℝ) | 
| 125 | 109, 7, 124 | sylancl 586 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶ℝ) | 
| 126 | 125 | ffvelcdmda 7103 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑗 + 1))‘𝑥) ∈ ℝ) | 
| 127 |  | letr 11356 | . . . . . . . 8
⊢ (((𝑇 · (𝐻‘𝑥)) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ ((𝐹‘(𝑗 + 1))‘𝑥) ∈ ℝ) → (((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) ∧ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) | 
| 128 | 120, 123,
126, 127 | syl3anc 1372 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) ∧ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) | 
| 129 | 116, 128 | mpan2d 694 | . . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) | 
| 130 | 129 | ss2rabdv 4075 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ⊆ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) | 
| 131 | 93 | fveq1d 6907 | . . . . . . . . 9
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑗)‘𝑥)) | 
| 132 | 131 | breq2d 5154 | . . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 133 | 132 | rabbidv 3443 | . . . . . . 7
⊢ (𝑛 = 𝑗 → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 134 | 23 | rabex 5338 | . . . . . . 7
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ∈ V | 
| 135 | 133, 89, 134 | fvmpt 7015 | . . . . . 6
⊢ (𝑗 ∈ ℕ → (𝐴‘𝑗) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 136 | 135 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 137 | 105 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) | 
| 138 | 106 | fveq1d 6907 | . . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘(𝑗 + 1))‘𝑥)) | 
| 139 | 138 | breq2d 5154 | . . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) | 
| 140 | 139 | rabbidv 3443 | . . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) | 
| 141 | 23 | rabex 5338 | . . . . . . 7
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)} ∈ V | 
| 142 | 140, 89, 141 | fvmpt 7015 | . . . . . 6
⊢ ((𝑗 + 1) ∈ ℕ →
(𝐴‘(𝑗 + 1)) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) | 
| 143 | 137, 142 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘(𝑗 + 1)) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) | 
| 144 | 130, 136,
143 | 3sstr4d 4038 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) ⊆ (𝐴‘(𝑗 + 1))) | 
| 145 | 58 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 146 | 49 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ∈ ℝ) | 
| 147 | 55 | an32s 652 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) | 
| 148 | 147 | fmpttd 7134 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)):ℕ⟶ℝ) | 
| 149 | 148 | frnd 6743 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ⊆ ℝ) | 
| 150 |  | 1nn 12278 | . . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ | 
| 151 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) | 
| 152 | 151, 147 | dmmptd 6712 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ℕ) | 
| 153 | 150, 152 | eleqtrrid 2847 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))) | 
| 154 | 153 | ne0d 4341 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) | 
| 155 |  | dm0rn0 5934 | . . . . . . . . . . . . . . . . . 18
⊢ (dom
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ∅) | 
| 156 | 155 | necon3bii 2992 | . . . . . . . . . . . . . . . . 17
⊢ (dom
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) | 
| 157 | 154, 156 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) | 
| 158 |  | itg2mono.5 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) | 
| 159 | 148 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ) | 
| 160 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) → (𝑧 ≤ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) | 
| 161 | 160 | ralrn 7107 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) | 
| 162 | 159, 161 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) | 
| 163 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | 
| 164 | 163 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) | 
| 165 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑚)‘𝑥) ∈ V | 
| 166 | 164, 151,
165 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) = ((𝐹‘𝑚)‘𝑥)) | 
| 167 | 166 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦)) | 
| 168 | 167 | ralbiia 3090 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦) | 
| 169 | 164 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦)) | 
| 170 | 169 | cbvralvw 3236 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑛 ∈
ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦) | 
| 171 | 168, 170 | bitr4i 278 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) | 
| 172 | 162, 171 | bitrdi 287 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) | 
| 173 | 172 | rexbidv 3178 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) | 
| 174 | 158, 173 | mpbird 257 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) | 
| 175 | 149, 157,
174 | suprcld 12232 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) | 
| 176 | 175 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) | 
| 177 | 16 | simp3d 1144 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 < 1) | 
| 178 | 177 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 𝑇 < 1) | 
| 179 | 17 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 𝑇 ∈ ℝ) | 
| 180 |  | 1red 11263 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 1 ∈ ℝ) | 
| 181 |  | simprr 772 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 0 < (𝐻‘𝑥)) | 
| 182 |  | ltmul1 12118 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ ∧ ((𝐻‘𝑥) ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 < 1 ↔ (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥)))) | 
| 183 | 179, 180,
146, 181, 182 | syl112anc 1375 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 < 1 ↔ (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥)))) | 
| 184 | 178, 183 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥))) | 
| 185 | 146 | recnd 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ∈ ℂ) | 
| 186 | 185 | mullidd 11280 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (1 · (𝐻‘𝑥)) = (𝐻‘𝑥)) | 
| 187 | 184, 186 | breqtrd 5168 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < (𝐻‘𝑥)) | 
| 188 |  | itg2mono.9 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 ∘r ≤ 𝐺) | 
| 189 |  | itg2mono.1 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| 190 | 175, 189 | fmptd 7133 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) | 
| 191 | 190 | ffnd 6736 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 Fn ℝ) | 
| 192 | 23 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ∈
V) | 
| 193 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐻‘𝑦) = (𝐻‘𝑦)) | 
| 194 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑦)) | 
| 195 | 194 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦))) | 
| 196 | 195 | rneqd 5948 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦))) | 
| 197 | 196 | supeq1d 9487 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) | 
| 198 |  | ltso 11342 | . . . . . . . . . . . . . . . . . . . . . 22
⊢  < Or
ℝ | 
| 199 | 198 | supex 9504 | . . . . . . . . . . . . . . . . . . . . 21
⊢ sup(ran
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑦)), ℝ, < ) ∈ V | 
| 200 | 197, 189,
199 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ → (𝐺‘𝑦) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) | 
| 201 | 200 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐺‘𝑦) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) | 
| 202 | 43, 191, 192, 192, 25, 193, 201 | ofrfval 7708 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐻 ∘r ≤ 𝐺 ↔ ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < ))) | 
| 203 | 188, 202 | mpbid 232 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) | 
| 204 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) | 
| 205 | 204, 197 | breq12d 5155 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < ))) | 
| 206 | 205 | cbvralvw 3236 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
ℝ (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) | 
| 207 | 203, 206 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| 208 | 207 | r19.21bi 3250 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| 209 | 208 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| 210 | 145, 146,
176, 187, 209 | ltletrd 11422 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| 211 | 149 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ⊆ ℝ) | 
| 212 | 157 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) | 
| 213 | 174 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) | 
| 214 |  | suprlub 12233 | . . . . . . . . . . . . . 14
⊢ (((ran
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) ∧ (𝑇 · (𝐻‘𝑥)) ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤)) | 
| 215 | 211, 212,
213, 145, 214 | syl31anc 1374 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ((𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤)) | 
| 216 | 210, 215 | mpbid 232 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤) | 
| 217 | 159 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ) | 
| 218 |  | breq2 5146 | . . . . . . . . . . . . . . 15
⊢ (𝑤 = ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) → ((𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) | 
| 219 | 218 | rexrn 7106 | . . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) | 
| 220 | 217, 219 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) | 
| 221 |  | fvex 6918 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑗)‘𝑥) ∈ V | 
| 222 | 131, 151,
221 | fvmpt 7015 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) = ((𝐹‘𝑗)‘𝑥)) | 
| 223 | 222 | breq2d 5154 | . . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → ((𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) ↔ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥))) | 
| 224 | 223 | rexbiia 3091 | . . . . . . . . . . . . 13
⊢
(∃𝑗 ∈
ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥)) | 
| 225 | 220, 224 | bitrdi 287 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥))) | 
| 226 | 216, 225 | mpbid 232 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥)) | 
| 227 | 179, 146 | remulcld 11292 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 228 | 103 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶(0[,)+∞)) | 
| 229 |  | simplr 768 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ) | 
| 230 | 228, 229 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ (0[,)+∞)) | 
| 231 |  | elrege0 13495 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑗)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 232 | 230, 231 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 233 | 232 | simpld 494 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) | 
| 234 | 233 | adantlrr 721 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) | 
| 235 |  | ltle 11350 | . . . . . . . . . . . . 13
⊢ (((𝑇 · (𝐻‘𝑥)) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑥) ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 236 | 227, 234,
235 | syl2an2r 685 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) ∧ 𝑗 ∈ ℕ) → ((𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 237 | 236 | reximdva 3167 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 238 | 226, 237 | mpd 15 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 239 | 238 | anassrs 467 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 0 < (𝐻‘𝑥)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 240 | 150 | ne0ii 4343 | . . . . . . . . . . 11
⊢ ℕ
≠ ∅ | 
| 241 | 58 | adantrr 717 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 242 | 241 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) | 
| 243 |  | 0red 11265 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 ∈
ℝ) | 
| 244 | 232 | adantlrr 721 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) | 
| 245 | 244 | simpld 494 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) | 
| 246 |  | simplrr 777 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑥) ≤ 0) | 
| 247 | 49 | adantrr 717 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → (𝐻‘𝑥) ∈ ℝ) | 
| 248 | 247 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑥) ∈ ℝ) | 
| 249 | 17 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℝ) | 
| 250 | 16 | simp2d 1143 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 𝑇) | 
| 251 | 250 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 < 𝑇) | 
| 252 |  | lemul2 12121 | . . . . . . . . . . . . . . . 16
⊢ (((𝐻‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧
(𝑇 ∈ ℝ ∧ 0
< 𝑇)) → ((𝐻‘𝑥) ≤ 0 ↔ (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0))) | 
| 253 | 248, 243,
249, 251, 252 | syl112anc 1375 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑥) ≤ 0 ↔ (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0))) | 
| 254 | 246, 253 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0)) | 
| 255 | 249 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℂ) | 
| 256 | 255 | mul01d 11461 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · 0) = 0) | 
| 257 | 254, 256 | breqtrd 5168 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ 0) | 
| 258 | 244 | simprd 495 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 259 | 242, 243,
245, 257, 258 | letrd 11419 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 260 | 259 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → ∀𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 261 |  | r19.2z 4494 | . . . . . . . . . . 11
⊢ ((ℕ
≠ ∅ ∧ ∀𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 262 | 240, 260,
261 | sylancr 587 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 263 | 262 | anassrs 467 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐻‘𝑥) ≤ 0) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 264 |  | 0red 11265 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) | 
| 265 | 239, 263,
264, 49 | ltlecasei 11370 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 266 | 265 | ralrimiva 3145 | . . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 267 |  | rabid2 3469 | . . . . . . 7
⊢ (ℝ
= {𝑥 ∈ ℝ ∣
∃𝑗 ∈ ℕ
(𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) | 
| 268 | 266, 267 | sylibr 234 | . . . . . 6
⊢ (𝜑 → ℝ = {𝑥 ∈ ℝ ∣
∃𝑗 ∈ ℕ
(𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 269 |  | iunrab 5051 | . . . . . 6
⊢ ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} = {𝑥 ∈ ℝ ∣ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} | 
| 270 | 268, 269 | eqtr4di 2794 | . . . . 5
⊢ (𝜑 → ℝ = ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 271 | 136 | iuneq2dv 5015 | . . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) | 
| 272 | 90 | ffnd 6736 | . . . . . 6
⊢ (𝜑 → 𝐴 Fn ℕ) | 
| 273 |  | fniunfv 7268 | . . . . . 6
⊢ (𝐴 Fn ℕ → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ ran 𝐴) | 
| 274 | 272, 273 | syl 17 | . . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ ran 𝐴) | 
| 275 | 270, 271,
274 | 3eqtr2rd 2783 | . . . 4
⊢ (𝜑 → ∪ ran 𝐴 = ℝ) | 
| 276 |  | eqid 2736 | . . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) | 
| 277 | 90, 144, 275, 10, 276 | itg1climres 25750 | . . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) ⇝
(∫1‘𝐻)) | 
| 278 |  | nnex 12273 | . . . . 5
⊢ ℕ
∈ V | 
| 279 | 278 | mptex 7244 | . . . 4
⊢ (𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ∈ V | 
| 280 | 279 | a1i 11 | . . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ∈ V) | 
| 281 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝐴‘𝑗) = (𝐴‘𝑘)) | 
| 282 | 281 | eleq2d 2826 | . . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑥 ∈ (𝐴‘𝑗) ↔ 𝑥 ∈ (𝐴‘𝑘))) | 
| 283 | 282 | ifbid 4548 | . . . . . . . . 9
⊢ (𝑗 = 𝑘 → if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0) = if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) | 
| 284 | 283 | mpteq2dv 5243 | . . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) | 
| 285 | 284 | fveq2d 6909 | . . . . . . 7
⊢ (𝑗 = 𝑘 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) | 
| 286 |  | eqid 2736 | . . . . . . 7
⊢ (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) = (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) | 
| 287 |  | fvex 6918 | . . . . . . 7
⊢
(∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ V | 
| 288 | 285, 286,
287 | fvmpt 7015 | . . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) | 
| 289 | 288 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) | 
| 290 | 90 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ dom vol) | 
| 291 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) | 
| 292 | 291 | i1fres 25741 | . . . . . . 7
⊢ ((𝐻 ∈ dom ∫1
∧ (𝐴‘𝑘) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom
∫1) | 
| 293 | 10, 290, 292 | syl2an2r 685 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom
∫1) | 
| 294 |  | itg1cl 25721 | . . . . . 6
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ ℝ) | 
| 295 | 293, 294 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ ℝ) | 
| 296 | 289, 295 | eqeltrd 2840 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) ∈ ℝ) | 
| 297 | 296 | recnd 11290 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) ∈ ℂ) | 
| 298 | 285 | oveq2d 7448 | . . . . . 6
⊢ (𝑗 = 𝑘 → (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) | 
| 299 |  | eqid 2736 | . . . . . 6
⊢ (𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) = (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) | 
| 300 |  | ovex 7465 | . . . . . 6
⊢ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) ∈ V | 
| 301 | 298, 299,
300 | fvmpt 7015 | . . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) | 
| 302 | 288 | oveq2d 7448 | . . . . 5
⊢ (𝑘 ∈ ℕ → (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘)) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) | 
| 303 | 301, 302 | eqtr4d 2779 | . . . 4
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘))) | 
| 304 | 303 | adantl 481 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘))) | 
| 305 | 1, 2, 277, 47, 280, 297, 304 | climmulc2 15674 | . 2
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ⇝ (𝑇 · (∫1‘𝐻))) | 
| 306 |  | icossicc 13477 | . . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) | 
| 307 |  | fss 6751 | . . . . . . 7
⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | 
| 308 | 6, 306, 307 | sylancl 586 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | 
| 309 |  | itg2mono.10 | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| 310 | 309 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ℝ) | 
| 311 |  | itg2cl 25768 | . . . . . . . . . . 11
⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) | 
| 312 | 308, 311 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) | 
| 313 | 312 | fmpttd 7134 | . . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) | 
| 314 | 313 | frnd 6743 | . . . . . . . 8
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆
ℝ*) | 
| 315 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(∫2‘(𝐹‘𝑛)) ∈ V | 
| 316 | 315 | elabrex 7263 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(∫2‘(𝐹‘𝑛)) ∈ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))}) | 
| 317 | 316 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))}) | 
| 318 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) | 
| 319 | 318 | rnmpt 5967 | . . . . . . . . 9
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))} | 
| 320 | 317, 319 | eleqtrrdi 2851 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) | 
| 321 |  | supxrub 13367 | . . . . . . . 8
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧
(∫2‘(𝐹‘𝑛)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘𝑛)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) | 
| 322 | 314, 320,
321 | syl2an2r 685 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) | 
| 323 |  | itg2mono.6 | . . . . . . 7
⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
) | 
| 324 | 322, 323 | breqtrrdi 5184 | . . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) | 
| 325 |  | itg2lecl 25774 | . . . . . 6
⊢ (((𝐹‘𝑛):ℝ⟶(0[,]+∞) ∧ 𝑆 ∈ ℝ ∧
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) → (∫2‘(𝐹‘𝑛)) ∈ ℝ) | 
| 326 | 308, 310,
324, 325 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ ℝ) | 
| 327 | 326 | fmpttd 7134 | . . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))):ℕ⟶ℝ) | 
| 328 | 308 | ralrimiva 3145 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | 
| 329 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | 
| 330 | 329 | feq1d 6719 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘𝑘):ℝ⟶(0[,]+∞))) | 
| 331 | 330 | cbvralvw 3236 | . . . . . . . . . 10
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)
↔ ∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)) | 
| 332 | 328, 331 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)) | 
| 333 |  | peano2nn 12279 | . . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) | 
| 334 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) | 
| 335 | 334 | feq1d 6719 | . . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘):ℝ⟶(0[,]+∞) ↔ (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞))) | 
| 336 | 335 | rspccva 3620 | . . . . . . . . 9
⊢
((∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)
∧ (𝑛 + 1) ∈
ℕ) → (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞)) | 
| 337 | 332, 333,
336 | syl2an 596 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞)) | 
| 338 |  | itg2le 25775 | . . . . . . . 8
⊢ (((𝐹‘𝑛):ℝ⟶(0[,]+∞) ∧ (𝐹‘(𝑛 + 1)):ℝ⟶(0[,]+∞) ∧
(𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) →
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) | 
| 339 | 308, 337,
91, 338 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) | 
| 340 | 339 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) | 
| 341 |  | 2fveq3 6910 | . . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘𝑘))) | 
| 342 |  | fvex 6918 | . . . . . . . . . 10
⊢
(∫2‘(𝐹‘𝑘)) ∈ V | 
| 343 | 341, 318,
342 | fvmpt 7015 | . . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) = (∫2‘(𝐹‘𝑘))) | 
| 344 |  | peano2nn 12279 | . . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) | 
| 345 |  | 2fveq3 6910 | . . . . . . . . . . 11
⊢ (𝑛 = (𝑘 + 1) → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 346 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(∫2‘(𝐹‘(𝑘 + 1))) ∈ V | 
| 347 | 345, 318,
346 | fvmpt 7015 | . . . . . . . . . 10
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) = (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 348 | 344, 347 | syl 17 | . . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) = (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 349 | 343, 348 | breq12d 5155 | . . . . . . . 8
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ (∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1))))) | 
| 350 | 349 | ralbiia 3090 | . . . . . . 7
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 351 |  | fvoveq1 7455 | . . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))) | 
| 352 | 351 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∫2‘(𝐹‘(𝑛 + 1))) = (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 353 | 341, 352 | breq12d 5155 | . . . . . . . 8
⊢ (𝑛 = 𝑘 → ((∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1))) ↔
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1))))) | 
| 354 | 353 | cbvralvw 3236 | . . . . . . 7
⊢
(∀𝑛 ∈
ℕ (∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1))) ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1)))) | 
| 355 | 350, 354 | bitr4i 278 | . . . . . 6
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) | 
| 356 | 340, 355 | sylibr 234 | . . . . 5
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1))) | 
| 357 | 356 | r19.21bi 3250 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1))) | 
| 358 | 324 | ralrimiva 3145 | . . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) | 
| 359 | 343 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑘)) ≤ 𝑥)) | 
| 360 | 359 | ralbiia 3090 | . . . . . . . 8
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ 𝑥) | 
| 361 | 341 | breq1d 5152 | . . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑘)) ≤ 𝑥)) | 
| 362 | 361 | cbvralvw 3236 | . . . . . . . 8
⊢
(∀𝑛 ∈
ℕ (∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ 𝑥) | 
| 363 | 360, 362 | bitr4i 278 | . . . . . . 7
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑥) | 
| 364 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑥 = 𝑆 → ((∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑛)) ≤ 𝑆)) | 
| 365 | 364 | ralbidv 3177 | . . . . . . 7
⊢ (𝑥 = 𝑆 → (∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆)) | 
| 366 | 363, 365 | bitrid 283 | . . . . . 6
⊢ (𝑥 = 𝑆 → (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆)) | 
| 367 | 366 | rspcev 3621 | . . . . 5
⊢ ((𝑆 ∈ ℝ ∧
∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥) | 
| 368 | 309, 358,
367 | syl2anc 584 | . . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥) | 
| 369 | 1, 2, 327, 357, 368 | climsup 15707 | . . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⇝ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) | 
| 370 | 327 | frnd 6743 | . . . . 5
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ) | 
| 371 | 318, 312 | dmmptd 6712 | . . . . . . 7
⊢ (𝜑 → dom (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ℕ) | 
| 372 | 240 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ℕ ≠
∅) | 
| 373 | 371, 372 | eqnetrd 3007 | . . . . . 6
⊢ (𝜑 → dom (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) | 
| 374 |  | dm0rn0 5934 | . . . . . . 7
⊢ (dom
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ∅ ↔ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ∅) | 
| 375 | 374 | necon3bii 2992 | . . . . . 6
⊢ (dom
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) | 
| 376 | 373, 375 | sylib 218 | . . . . 5
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) | 
| 377 | 315, 318 | fnmpti 6710 | . . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ | 
| 378 |  | breq1 5145 | . . . . . . . . 9
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) → (𝑧 ≤ 𝑥 ↔ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) | 
| 379 | 378 | ralrn 7107 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) | 
| 380 | 377, 379 | mp1i 13 | . . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) | 
| 381 | 380 | rexbidv 3178 | . . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) | 
| 382 | 368, 381 | mpbird 257 | . . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥) | 
| 383 |  | supxrre 13370 | . . . . 5
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥) → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) | 
| 384 | 370, 376,
382, 383 | syl3anc 1372 | . . . 4
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) | 
| 385 | 323, 384 | eqtr2id 2789 | . . 3
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < ) = 𝑆) | 
| 386 | 369, 385 | breqtrd 5168 | . 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⇝ 𝑆) | 
| 387 | 17 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℝ) | 
| 388 | 90 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) ∈ dom vol) | 
| 389 | 276 | i1fres 25741 | . . . . . . 7
⊢ ((𝐻 ∈ dom ∫1
∧ (𝐴‘𝑗) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom
∫1) | 
| 390 | 10, 388, 389 | syl2an2r 685 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom
∫1) | 
| 391 |  | itg1cl 25721 | . . . . . 6
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) ∈ ℝ) | 
| 392 | 390, 391 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) ∈ ℝ) | 
| 393 | 387, 392 | remulcld 11292 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) ∈ ℝ) | 
| 394 | 393 | fmpttd 7134 | . . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥),
0))))):ℕ⟶ℝ) | 
| 395 | 394 | ffvelcdmda 7103 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) ∈ ℝ) | 
| 396 | 327 | ffvelcdmda 7103 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ∈ ℝ) | 
| 397 | 329 | feq1d 6719 | . . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘𝑘):ℝ⟶(0[,)+∞))) | 
| 398 | 397 | cbvralvw 3236 | . . . . . . 7
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
↔ ∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,)+∞)) | 
| 399 | 99, 398 | sylib 218 | . . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘):ℝ⟶(0[,)+∞)) | 
| 400 | 399 | r19.21bi 3250 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):ℝ⟶(0[,)+∞)) | 
| 401 |  | fss 6751 | . . . . 5
⊢ (((𝐹‘𝑘):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑘):ℝ⟶(0[,]+∞)) | 
| 402 | 400, 306,
401 | sylancl 586 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):ℝ⟶(0[,]+∞)) | 
| 403 | 23 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ℝ ∈
V) | 
| 404 | 17 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑇 ∈ ℝ) | 
| 405 | 404 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) | 
| 406 |  | fvex 6918 | . . . . . . . . 9
⊢ (𝐻‘𝑥) ∈ V | 
| 407 |  | c0ex 11256 | . . . . . . . . 9
⊢ 0 ∈
V | 
| 408 | 406, 407 | ifex 4575 | . . . . . . . 8
⊢ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0) ∈ V | 
| 409 | 408 | a1i 11 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0) ∈ V) | 
| 410 |  | fconstmpt 5746 | . . . . . . . 8
⊢ (ℝ
× {𝑇}) = (𝑥 ∈ ℝ ↦ 𝑇) | 
| 411 | 410 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℝ ×
{𝑇}) = (𝑥 ∈ ℝ ↦ 𝑇)) | 
| 412 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) | 
| 413 | 403, 405,
409, 411, 412 | offval2 7718 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) | 
| 414 |  | ovif2 7533 | . . . . . . . 8
⊢ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), (𝑇 · 0)) | 
| 415 | 47 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑇 ∈ ℂ) | 
| 416 | 415 | mul01d 11461 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇 · 0) = 0) | 
| 417 | 416 | ifeq2d 4545 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), (𝑇 · 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) | 
| 418 | 414, 417 | eqtrid 2788 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) | 
| 419 | 418 | mpteq2dv 5243 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) | 
| 420 | 413, 419 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) | 
| 421 | 293, 404 | i1fmulc 25739 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ dom
∫1) | 
| 422 | 420, 421 | eqeltrrd 2841 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∈ dom
∫1) | 
| 423 |  | iftrue 4530 | . . . . . . . . 9
⊢ (𝑥 ∈ (𝐴‘𝑘) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = (𝑇 · (𝐻‘𝑥))) | 
| 424 | 423 | adantl 481 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = (𝑇 · (𝐻‘𝑥))) | 
| 425 | 329 | fveq1d 6907 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) | 
| 426 | 425 | breq2d 5154 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥))) | 
| 427 | 426 | rabbidv 3443 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) | 
| 428 | 23 | rabex 5338 | . . . . . . . . . . . . 13
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} ∈ V | 
| 429 | 427, 89, 428 | fvmpt 7015 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) | 
| 430 | 429 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴‘𝑘) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) | 
| 431 | 430 | eleq2d 2826 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴‘𝑘) ↔ 𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)})) | 
| 432 | 431 | biimpa 476 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → 𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) | 
| 433 |  | rabid 3457 | . . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} ↔ (𝑥 ∈ ℝ ∧ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥))) | 
| 434 | 433 | simprbi 496 | . . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 435 | 432, 434 | syl 17 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 436 | 424, 435 | eqbrtrd 5164 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 437 |  | iffalse 4533 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ (𝐴‘𝑘) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = 0) | 
| 438 | 437 | adantl 481 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = 0) | 
| 439 | 400 | ffvelcdmda 7103 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞)) | 
| 440 |  | elrege0 13495 | . . . . . . . . . . 11
⊢ (((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘𝑘)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑘)‘𝑥))) | 
| 441 | 440 | simprbi 496 | . . . . . . . . . 10
⊢ (((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 442 | 439, 441 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 443 | 442 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 444 | 438, 443 | eqbrtrd 5164 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 445 | 436, 444 | pm2.61dan 812 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 446 | 445 | ralrimiva 3145 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) | 
| 447 |  | ovex 7465 | . . . . . . . 8
⊢ (𝑇 · (𝐻‘𝑥)) ∈ V | 
| 448 | 447, 407 | ifex 4575 | . . . . . . 7
⊢ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ∈ V | 
| 449 | 448 | a1i 11 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ∈ V) | 
| 450 |  | fvexd 6920 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑘)‘𝑥) ∈ V) | 
| 451 |  | eqidd 2737 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) | 
| 452 | 400 | feqmptd 6976 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑘)‘𝑥))) | 
| 453 | 403, 449,
450, 451, 452 | ofrfval2 7719 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥))) | 
| 454 | 446, 453 | mpbird 257 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘)) | 
| 455 |  | itg2ub 25769 | . . . 4
⊢ (((𝐹‘𝑘):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∈ dom ∫1 ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) ≤ (∫2‘(𝐹‘𝑘))) | 
| 456 | 402, 422,
454, 455 | syl3anc 1372 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) ≤ (∫2‘(𝐹‘𝑘))) | 
| 457 | 301 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) | 
| 458 | 293, 404 | itg1mulc 25740 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘((ℝ × {𝑇}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) | 
| 459 | 420 | fveq2d 6909 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘((ℝ × {𝑇}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)))) | 
| 460 | 457, 458,
459 | 3eqtr2d 2782 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)))) | 
| 461 | 343 | adantl 481 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) = (∫2‘(𝐹‘𝑘))) | 
| 462 | 456, 460,
461 | 3brtr4d 5174 | . 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘)) | 
| 463 | 1, 2, 305, 386, 395, 396, 462 | climle 15677 | 1
⊢ (𝜑 → (𝑇 · (∫1‘𝐻)) ≤ 𝑆) |