Step | Hyp | Ref
| Expression |
1 | | nnuz 12630 |
. 2
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12360 |
. 2
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
4 | | readdcl 10963 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
5 | 4 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ) |
6 | | itg2mono.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
7 | | rge0ssre 13197 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ |
8 | | fss 6626 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘𝑛):ℝ⟶ℝ) |
9 | 6, 7, 8 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶ℝ) |
10 | | itg2mono.8 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 ∈ dom
∫1) |
11 | | itg2mono.7 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑇 ∈ (0(,)1)) |
12 | | 0xr 11031 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ* |
13 | | 1xr 11043 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ* |
14 | | elioo2 13129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑇 ∈ (0(,)1) ↔ (𝑇 ∈ ℝ ∧ 0 <
𝑇 ∧ 𝑇 < 1))) |
15 | 12, 13, 14 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑇 ∈ (0(,)1) ↔ (𝑇 ∈ ℝ ∧ 0 <
𝑇 ∧ 𝑇 < 1)) |
16 | 11, 15 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑇 ∈ ℝ ∧ 0 < 𝑇 ∧ 𝑇 < 1)) |
17 | 16 | simp1d 1141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ℝ) |
18 | 17 | renegcld 11411 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → -𝑇 ∈ ℝ) |
19 | 10, 18 | i1fmulc 24877 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ × {-𝑇}) ∘f ·
𝐻) ∈ dom
∫1) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) ∈ dom
∫1) |
21 | | i1ff 24849 |
. . . . . . . . . . . . . . . 16
⊢
(((ℝ × {-𝑇}) ∘f · 𝐻) ∈ dom ∫1
→ ((ℝ × {-𝑇}) ∘f · 𝐻):ℝ⟶ℝ) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻):ℝ⟶ℝ) |
23 | | reex 10971 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ∈
V) |
25 | | inidm 4153 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
∩ ℝ) = ℝ |
26 | 5, 9, 22, 24, 24, 25 | off 7560 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)):ℝ⟶ℝ) |
27 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)):ℝ⟶ℝ) |
28 | 27 | ffnd 6610 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) Fn
ℝ) |
29 | | elpreima 6944 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) Fn ℝ
→ (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (𝑥
∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0)))) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (𝑥
∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0)))) |
31 | 3, 30 | mpbirand 704 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
(-∞(,)0))) |
32 | | elioomnf 13185 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ* → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
((((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0))) |
33 | 12, 32 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
((((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0)) |
34 | 26 | ffvelrnda 6970 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈
ℝ) |
35 | 34 | biantrurd 533 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ ℝ ∧ (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0))) |
36 | 33, 35 | bitr4id 290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) ∈ (-∞(,)0) ↔
(((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻))‘𝑥) < 0)) |
37 | 6 | ffnd 6610 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) Fn ℝ) |
38 | 22 | ffnd 6610 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) Fn
ℝ) |
39 | | eqidd 2740 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑥)) |
40 | 18 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → -𝑇 ∈ ℝ) |
41 | | i1ff 24849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 ∈ dom ∫1
→ 𝐻:ℝ⟶ℝ) |
42 | 10, 41 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻:ℝ⟶ℝ) |
43 | 42 | ffnd 6610 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐻 Fn ℝ) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐻 Fn ℝ) |
45 | | eqidd 2740 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) = (𝐻‘𝑥)) |
46 | 24, 40, 44, 45 | ofc1 7568 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((ℝ ×
{-𝑇}) ∘f
· 𝐻)‘𝑥) = (-𝑇 · (𝐻‘𝑥))) |
47 | 17 | recnd 11012 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 ∈ ℂ) |
48 | 47 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℂ) |
49 | 42 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) |
50 | 49 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) |
51 | 50 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℂ) |
52 | 48, 51 | mulneg1d 11437 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (-𝑇 · (𝐻‘𝑥)) = -(𝑇 · (𝐻‘𝑥))) |
53 | 46, 52 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((ℝ ×
{-𝑇}) ∘f
· 𝐻)‘𝑥) = -(𝑇 · (𝐻‘𝑥))) |
54 | 37, 38, 24, 24, 25, 39, 53 | ofval 7553 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) = (((𝐹‘𝑛)‘𝑥) + -(𝑇 · (𝐻‘𝑥)))) |
55 | 9 | ffvelrnda 6970 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
56 | 55 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑛)‘𝑥) ∈ ℂ) |
57 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
58 | 57, 49 | remulcld 11014 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
59 | 58 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
60 | 59 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℂ) |
61 | 56, 60 | negsubd 11347 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛)‘𝑥) + -(𝑇 · (𝐻‘𝑥))) = (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥)))) |
62 | 54, 61 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) = (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥)))) |
63 | 62 | breq1d 5085 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ (((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥))) < 0)) |
64 | | 0red 10987 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) |
65 | 55, 59, 64 | ltsubaddd 11580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛)‘𝑥) − (𝑇 · (𝐻‘𝑥))) < 0 ↔ ((𝐹‘𝑛)‘𝑥) < (0 + (𝑇 · (𝐻‘𝑥))))) |
66 | 60 | addid2d 11185 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 + (𝑇 · (𝐻‘𝑥))) = (𝑇 · (𝐻‘𝑥))) |
67 | 66 | breq2d 5087 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝐹‘𝑛)‘𝑥) < (0 + (𝑇 · (𝐻‘𝑥))) ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) |
68 | 63, 65, 67 | 3bitrd 305 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻))‘𝑥) < 0 ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) |
69 | 31, 36, 68 | 3bitrd 305 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) |
70 | 69 | notbid 318 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ↔ ¬ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) |
71 | | eldif 3898 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ (𝑥
∈ ℝ ∧ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) |
72 | 71 | baib 536 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) |
73 | 72 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ ¬ 𝑥 ∈ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) |
74 | 59, 55 | lenltd 11130 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ ¬ ((𝐹‘𝑛)‘𝑥) < (𝑇 · (𝐻‘𝑥)))) |
75 | 70, 73, 74 | 3bitr4d 311 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ↔ (𝑇
· (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥))) |
76 | 75 | rabbi2dva 4152 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∩
(ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) = {𝑥
∈ ℝ ∣ (𝑇
· (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) |
77 | | rembl 24713 |
. . . . . . 7
⊢ ℝ
∈ dom vol |
78 | | itg2mono.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
79 | | i1fmbf 24848 |
. . . . . . . . . . 11
⊢
(((ℝ × {-𝑇}) ∘f · 𝐻) ∈ dom ∫1
→ ((ℝ × {-𝑇}) ∘f · 𝐻) ∈ MblFn) |
80 | 20, 79 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((ℝ ×
{-𝑇}) ∘f
· 𝐻) ∈
MblFn) |
81 | 78, 80 | mbfadd 24834 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) ∈
MblFn) |
82 | | mbfima 24803 |
. . . . . . . . 9
⊢ ((((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) ∈ MblFn
∧ ((𝐹‘𝑛) ∘f +
((ℝ × {-𝑇})
∘f · 𝐻)):ℝ⟶ℝ) → (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol) |
83 | 81, 26, 82 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol) |
84 | | cmmbl 24707 |
. . . . . . . 8
⊢ ((◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)) ∈ dom vol → (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) |
85 | 83, 84 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∖
(◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) |
86 | | inmbl 24715 |
. . . . . . 7
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0))) ∈ dom vol) → (ℝ ∩ (ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) ∈ dom vol) |
87 | 77, 85, 86 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (ℝ ∩
(ℝ ∖ (◡((𝐹‘𝑛) ∘f + ((ℝ ×
{-𝑇}) ∘f
· 𝐻)) “
(-∞(,)0)))) ∈ dom vol) |
88 | 76, 87 | eqeltrrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} ∈ dom vol) |
89 | | itg2mono.11 |
. . . . 5
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)}) |
90 | 88, 89 | fmptd 6997 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ⟶dom vol) |
91 | | itg2mono.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
92 | 91 | ralrimiva 3104 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
93 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
94 | | fvoveq1 7307 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑗 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑗 + 1))) |
95 | 93, 94 | breq12d 5088 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)) ↔ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1)))) |
96 | 95 | cbvralvw 3384 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛) ∘r ≤
(𝐹‘(𝑛 + 1)) ↔ ∀𝑗 ∈ ℕ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) |
97 | 92, 96 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) |
98 | 97 | r19.21bi 3135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1))) |
99 | 6 | ralrimiva 3104 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
100 | 93 | feq1d 6594 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘𝑗):ℝ⟶(0[,)+∞))) |
101 | 100 | cbvralvw 3384 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
↔ ∀𝑗 ∈
ℕ (𝐹‘𝑗):ℝ⟶(0[,)+∞)) |
102 | 99, 101 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑗 ∈ ℕ (𝐹‘𝑗):ℝ⟶(0[,)+∞)) |
103 | 102 | r19.21bi 3135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶(0[,)+∞)) |
104 | 103 | ffnd 6610 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) Fn ℝ) |
105 | | peano2nn 11994 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
106 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑗 + 1) → (𝐹‘𝑛) = (𝐹‘(𝑗 + 1))) |
107 | 106 | feq1d 6594 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑗 + 1) → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞))) |
108 | 107 | rspccva 3561 |
. . . . . . . . . . . 12
⊢
((∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
∧ (𝑗 + 1) ∈
ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞)) |
109 | 99, 105, 108 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶(0[,)+∞)) |
110 | 109 | ffnd 6610 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 + 1)) Fn ℝ) |
111 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℝ ∈
V) |
112 | | eqidd 2740 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) = ((𝐹‘𝑗)‘𝑥)) |
113 | | eqidd 2740 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑗 + 1))‘𝑥) = ((𝐹‘(𝑗 + 1))‘𝑥)) |
114 | 104, 110,
111, 111, 25, 112, 113 | ofrfval 7552 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗) ∘r ≤ (𝐹‘(𝑗 + 1)) ↔ ∀𝑥 ∈ ℝ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) |
115 | 98, 114 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑥 ∈ ℝ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) |
116 | 115 | r19.21bi 3135 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) |
117 | 17 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
118 | 42 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐻:ℝ⟶ℝ) |
119 | 118 | ffvelrnda 6970 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ∈ ℝ) |
120 | 117, 119 | remulcld 11014 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
121 | | fss 6626 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑗):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘𝑗):ℝ⟶ℝ) |
122 | 103, 7, 121 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶ℝ) |
123 | 122 | ffvelrnda 6970 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) |
124 | | fss 6626 |
. . . . . . . . . 10
⊢ (((𝐹‘(𝑗 + 1)):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ ℝ) → (𝐹‘(𝑗 +
1)):ℝ⟶ℝ) |
125 | 109, 7, 124 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝑗 +
1)):ℝ⟶ℝ) |
126 | 125 | ffvelrnda 6970 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘(𝑗 + 1))‘𝑥) ∈ ℝ) |
127 | | letr 11078 |
. . . . . . . 8
⊢ (((𝑇 · (𝐻‘𝑥)) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ ((𝐹‘(𝑗 + 1))‘𝑥) ∈ ℝ) → (((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) ∧ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) |
128 | 120, 123,
126, 127 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) ∧ ((𝐹‘𝑗)‘𝑥) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) |
129 | 116, 128 | mpan2d 691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) |
130 | 129 | ss2rabdv 4010 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ⊆ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) |
131 | 93 | fveq1d 6785 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑗)‘𝑥)) |
132 | 131 | breq2d 5087 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) |
133 | 132 | rabbidv 3415 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
134 | 23 | rabex 5257 |
. . . . . . 7
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ∈ V |
135 | 133, 89, 134 | fvmpt 6884 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → (𝐴‘𝑗) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
136 | 135 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
137 | 105 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈ ℕ) |
138 | 106 | fveq1d 6785 |
. . . . . . . . 9
⊢ (𝑛 = (𝑗 + 1) → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘(𝑗 + 1))‘𝑥)) |
139 | 138 | breq2d 5087 |
. . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥))) |
140 | 139 | rabbidv 3415 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) |
141 | 23 | rabex 5257 |
. . . . . . 7
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)} ∈ V |
142 | 140, 89, 141 | fvmpt 6884 |
. . . . . 6
⊢ ((𝑗 + 1) ∈ ℕ →
(𝐴‘(𝑗 + 1)) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) |
143 | 137, 142 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘(𝑗 + 1)) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘(𝑗 + 1))‘𝑥)}) |
144 | 130, 136,
143 | 3sstr4d 3969 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) ⊆ (𝐴‘(𝑗 + 1))) |
145 | 58 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
146 | 49 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ∈ ℝ) |
147 | 55 | an32s 649 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛)‘𝑥) ∈ ℝ) |
148 | 147 | fmpttd 6998 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)):ℕ⟶ℝ) |
149 | 148 | frnd 6617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ⊆ ℝ) |
150 | | 1nn 11993 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ |
151 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) |
152 | 151, 147 | dmmptd 6587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ℕ) |
153 | 150, 152 | eleqtrrid 2847 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 1 ∈ dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))) |
154 | 153 | ne0d 4270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → dom (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) |
155 | | dm0rn0 5837 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) = ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ∅) |
156 | 155 | necon3bii 2997 |
. . . . . . . . . . . . . . . . 17
⊢ (dom
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) |
157 | 154, 156 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) |
158 | | itg2mono.5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
159 | 148 | ffnd 6610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ) |
160 | | breq1 5078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) → (𝑧 ≤ 𝑦 ↔ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) |
161 | 160 | ralrn 6973 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) |
162 | 159, 161 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦)) |
163 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
164 | 163 | fveq1d 6785 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) |
165 | | fvex 6796 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑚)‘𝑥) ∈ V |
166 | 164, 151,
165 | fvmpt 6884 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) = ((𝐹‘𝑚)‘𝑥)) |
167 | 166 | breq1d 5085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦)) |
168 | 167 | ralbiia 3092 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦) |
169 | 164 | breq1d 5085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦)) |
170 | 169 | cbvralvw 3384 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑛 ∈
ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚 ∈ ℕ ((𝐹‘𝑚)‘𝑥) ≤ 𝑦) |
171 | 168, 170 | bitr4i 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝐹‘𝑛)‘𝑥))‘𝑚) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
172 | 162, 171 | bitrdi 287 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
173 | 172 | rexbidv 3227 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦)) |
174 | 158, 173 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) |
175 | 149, 157,
174 | suprcld 11947 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) |
176 | 175 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ∈
ℝ) |
177 | 16 | simp3d 1143 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 < 1) |
178 | 177 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 𝑇 < 1) |
179 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 𝑇 ∈ ℝ) |
180 | | 1red 10985 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 1 ∈ ℝ) |
181 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → 0 < (𝐻‘𝑥)) |
182 | | ltmul1 11834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑇 ∈ ℝ ∧ 1 ∈
ℝ ∧ ((𝐻‘𝑥) ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 < 1 ↔ (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥)))) |
183 | 179, 180,
146, 181, 182 | syl112anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 < 1 ↔ (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥)))) |
184 | 178, 183 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < (1 · (𝐻‘𝑥))) |
185 | 146 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ∈ ℂ) |
186 | 185 | mulid2d 11002 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (1 · (𝐻‘𝑥)) = (𝐻‘𝑥)) |
187 | 184, 186 | breqtrd 5101 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < (𝐻‘𝑥)) |
188 | | itg2mono.9 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐻 ∘r ≤ 𝐺) |
189 | | itg2mono.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
190 | 175, 189 | fmptd 6997 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
191 | 190 | ffnd 6610 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺 Fn ℝ) |
192 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ∈
V) |
193 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐻‘𝑦) = (𝐻‘𝑦)) |
194 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑦)) |
195 | 194 | mpteq2dv 5177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦))) |
196 | 195 | rneqd 5850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) = ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦))) |
197 | 196 | supeq1d 9214 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) |
198 | | ltso 11064 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ < Or
ℝ |
199 | 198 | supex 9231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ sup(ran
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑦)), ℝ, < ) ∈ V |
200 | 197, 189,
199 | fvmpt 6884 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℝ → (𝐺‘𝑦) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) |
201 | 200 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐺‘𝑦) = sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) |
202 | 43, 191, 192, 192, 25, 193, 201 | ofrfval 7552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐻 ∘r ≤ 𝐺 ↔ ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < ))) |
203 | 188, 202 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) |
204 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝐻‘𝑥) = (𝐻‘𝑦)) |
205 | 204, 197 | breq12d 5088 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < ))) |
206 | 205 | cbvralvw 3384 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
ℝ (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∀𝑦 ∈ ℝ (𝐻‘𝑦) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑦)), ℝ, < )) |
207 | 203, 206 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
208 | 207 | r19.21bi 3135 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
209 | 208 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝐻‘𝑥) ≤ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
210 | 145, 146,
176, 187, 209 | ltletrd 11144 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
211 | 149 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ⊆ ℝ) |
212 | 157 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅) |
213 | 174 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) |
214 | | suprlub 11948 |
. . . . . . . . . . . . . 14
⊢ (((ran
(𝑛 ∈ ℕ ↦
((𝐹‘𝑛)‘𝑥)) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))𝑧 ≤ 𝑦) ∧ (𝑇 · (𝐻‘𝑥)) ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤)) |
215 | 211, 212,
213, 145, 214 | syl31anc 1372 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ((𝑇 · (𝐻‘𝑥)) < sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤)) |
216 | 210, 215 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤) |
217 | 159 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ) |
218 | | breq2 5079 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) → ((𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) |
219 | 218 | rexrn 6972 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)) Fn ℕ → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) |
220 | 217, 219 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗))) |
221 | | fvex 6796 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑗)‘𝑥) ∈ V |
222 | 131, 151,
221 | fvmpt 6884 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) = ((𝐹‘𝑗)‘𝑥)) |
223 | 222 | breq2d 5087 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → ((𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) ↔ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥))) |
224 | 223 | rexbiia 3181 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈
ℕ (𝑇 · (𝐻‘𝑥)) < ((𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))‘𝑗) ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥)) |
225 | 220, 224 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥))(𝑇 · (𝐻‘𝑥)) < 𝑤 ↔ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥))) |
226 | 216, 225 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥)) |
227 | 179, 146 | remulcld 11014 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
228 | 103 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):ℝ⟶(0[,)+∞)) |
229 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ) |
230 | 228, 229 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ (0[,)+∞)) |
231 | | elrege0 13195 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑗)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) |
232 | 230, 231 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) |
233 | 232 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) |
234 | 233 | adantlrr 718 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) |
235 | | ltle 11072 |
. . . . . . . . . . . . 13
⊢ (((𝑇 · (𝐻‘𝑥)) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑥) ∈ ℝ) → ((𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) |
236 | 227, 234,
235 | syl2an2r 682 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) ∧ 𝑗 ∈ ℕ) → ((𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) |
237 | 236 | reximdva 3204 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → (∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) < ((𝐹‘𝑗)‘𝑥) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥))) |
238 | 226, 237 | mpd 15 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 0 < (𝐻‘𝑥))) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
239 | 238 | anassrs 468 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 0 < (𝐻‘𝑥)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
240 | 150 | ne0ii 4272 |
. . . . . . . . . . 11
⊢ ℕ
≠ ∅ |
241 | 58 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
242 | 241 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ∈ ℝ) |
243 | | 0red 10987 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 ∈
ℝ) |
244 | 232 | adantlrr 718 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (((𝐹‘𝑗)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑗)‘𝑥))) |
245 | 244 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑥) ∈ ℝ) |
246 | | simplrr 775 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑥) ≤ 0) |
247 | 49 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → (𝐻‘𝑥) ∈ ℝ) |
248 | 247 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝐻‘𝑥) ∈ ℝ) |
249 | 17 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℝ) |
250 | 16 | simp2d 1142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 𝑇) |
251 | 250 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 < 𝑇) |
252 | | lemul2 11837 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧
(𝑇 ∈ ℝ ∧ 0
< 𝑇)) → ((𝐻‘𝑥) ≤ 0 ↔ (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0))) |
253 | 248, 243,
249, 251, 252 | syl112anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑥) ≤ 0 ↔ (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0))) |
254 | 246, 253 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ (𝑇 · 0)) |
255 | 249 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℂ) |
256 | 255 | mul01d 11183 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · 0) = 0) |
257 | 254, 256 | breqtrd 5101 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ 0) |
258 | 244 | simprd 496 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐹‘𝑗)‘𝑥)) |
259 | 242, 243,
245, 257, 258 | letrd 11141 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) ∧ 𝑗 ∈ ℕ) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
260 | 259 | ralrimiva 3104 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → ∀𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
261 | | r19.2z 4426 |
. . . . . . . . . . 11
⊢ ((ℕ
≠ ∅ ∧ ∀𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
262 | 240, 260,
261 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐻‘𝑥) ≤ 0)) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
263 | 262 | anassrs 468 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐻‘𝑥) ≤ 0) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
264 | | 0red 10987 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) |
265 | 239, 263,
264, 49 | ltlecasei 11092 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
266 | 265 | ralrimiva 3104 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
267 | | rabid2 3315 |
. . . . . . 7
⊢ (ℝ
= {𝑥 ∈ ℝ ∣
∃𝑗 ∈ ℕ
(𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)) |
268 | 266, 267 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → ℝ = {𝑥 ∈ ℝ ∣
∃𝑗 ∈ ℕ
(𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
269 | | iunrab 4983 |
. . . . . 6
⊢ ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} = {𝑥 ∈ ℝ ∣ ∃𝑗 ∈ ℕ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)} |
270 | 268, 269 | eqtr4di 2797 |
. . . . 5
⊢ (𝜑 → ℝ = ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
271 | 136 | iuneq2dv 4949 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ 𝑗 ∈ ℕ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑗)‘𝑥)}) |
272 | 90 | ffnd 6610 |
. . . . . 6
⊢ (𝜑 → 𝐴 Fn ℕ) |
273 | | fniunfv 7129 |
. . . . . 6
⊢ (𝐴 Fn ℕ → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ ran 𝐴) |
274 | 272, 273 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (𝐴‘𝑗) = ∪ ran 𝐴) |
275 | 270, 271,
274 | 3eqtr2rd 2786 |
. . . 4
⊢ (𝜑 → ∪ ran 𝐴 = ℝ) |
276 | | eqid 2739 |
. . . 4
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) |
277 | 90, 144, 275, 10, 276 | itg1climres 24888 |
. . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) ⇝
(∫1‘𝐻)) |
278 | | nnex 11988 |
. . . . 5
⊢ ℕ
∈ V |
279 | 278 | mptex 7108 |
. . . 4
⊢ (𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ∈ V |
280 | 279 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ∈ V) |
281 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝐴‘𝑗) = (𝐴‘𝑘)) |
282 | 281 | eleq2d 2825 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑥 ∈ (𝐴‘𝑗) ↔ 𝑥 ∈ (𝐴‘𝑘))) |
283 | 282 | ifbid 4483 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0) = if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) |
284 | 283 | mpteq2dv 5177 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) |
285 | 284 | fveq2d 6787 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) |
286 | | eqid 2739 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) = (𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) |
287 | | fvex 6796 |
. . . . . . 7
⊢
(∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ V |
288 | 285, 286,
287 | fvmpt 6884 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) |
289 | 288 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) |
290 | 90 | ffvelrnda 6970 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴‘𝑘) ∈ dom vol) |
291 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) |
292 | 291 | i1fres 24879 |
. . . . . . 7
⊢ ((𝐻 ∈ dom ∫1
∧ (𝐴‘𝑘) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom
∫1) |
293 | 10, 290, 292 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom
∫1) |
294 | | itg1cl 24858 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ ℝ) |
295 | 293, 294 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ ℝ) |
296 | 289, 295 | eqeltrd 2840 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) ∈ ℝ) |
297 | 296 | recnd 11012 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘) ∈ ℂ) |
298 | 285 | oveq2d 7300 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) |
299 | | eqid 2739 |
. . . . . 6
⊢ (𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) = (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) |
300 | | ovex 7317 |
. . . . . 6
⊢ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) ∈ V |
301 | 298, 299,
300 | fvmpt 6884 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) |
302 | 288 | oveq2d 7300 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘)) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) |
303 | 301, 302 | eqtr4d 2782 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑗 ∈ ℕ ↦ (𝑇 ·
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘))) |
304 | 303 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · ((𝑗 ∈ ℕ ↦
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))‘𝑘))) |
305 | 1, 2, 277, 47, 280, 297, 304 | climmulc2 15355 |
. 2
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))))) ⇝ (𝑇 · (∫1‘𝐻))) |
306 | | icossicc 13177 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
307 | | fss 6626 |
. . . . . . 7
⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
308 | 6, 306, 307 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
309 | | itg2mono.10 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℝ) |
310 | 309 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ℝ) |
311 | | itg2cl 24906 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) |
312 | 308, 311 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈
ℝ*) |
313 | 312 | fmpttd 6998 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) |
314 | 313 | frnd 6617 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆
ℝ*) |
315 | | fvex 6796 |
. . . . . . . . . . 11
⊢
(∫2‘(𝐹‘𝑛)) ∈ V |
316 | 315 | elabrex 7125 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(∫2‘(𝐹‘𝑛)) ∈ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))}) |
317 | 316 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))}) |
318 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) |
319 | 318 | rnmpt 5867 |
. . . . . . . . 9
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = {𝑥 ∣ ∃𝑛 ∈ ℕ 𝑥 = (∫2‘(𝐹‘𝑛))} |
320 | 317, 319 | eleqtrrdi 2851 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) |
321 | | supxrub 13067 |
. . . . . . . 8
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧
(∫2‘(𝐹‘𝑛)) ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘𝑛)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) |
322 | 314, 320,
321 | syl2an2r 682 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
)) |
323 | | itg2mono.6 |
. . . . . . 7
⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, <
) |
324 | 322, 323 | breqtrrdi 5117 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) |
325 | | itg2lecl 24912 |
. . . . . 6
⊢ (((𝐹‘𝑛):ℝ⟶(0[,]+∞) ∧ 𝑆 ∈ ℝ ∧
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) → (∫2‘(𝐹‘𝑛)) ∈ ℝ) |
326 | 308, 310,
324, 325 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ∈ ℝ) |
327 | 326 | fmpttd 6998 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))):ℕ⟶ℝ) |
328 | 308 | ralrimiva 3104 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
329 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
330 | 329 | feq1d 6594 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘𝑘):ℝ⟶(0[,]+∞))) |
331 | 330 | cbvralvw 3384 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)
↔ ∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)) |
332 | 328, 331 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)) |
333 | | peano2nn 11994 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
334 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
335 | 334 | feq1d 6594 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘):ℝ⟶(0[,]+∞) ↔ (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞))) |
336 | 335 | rspccva 3561 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,]+∞)
∧ (𝑛 + 1) ∈
ℕ) → (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞)) |
337 | 332, 333,
336 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 +
1)):ℝ⟶(0[,]+∞)) |
338 | | itg2le 24913 |
. . . . . . . 8
⊢ (((𝐹‘𝑛):ℝ⟶(0[,]+∞) ∧ (𝐹‘(𝑛 + 1)):ℝ⟶(0[,]+∞) ∧
(𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) →
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) |
339 | 308, 337,
91, 338 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) |
340 | 339 | ralrimiva 3104 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) |
341 | | 2fveq3 6788 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘𝑘))) |
342 | | fvex 6796 |
. . . . . . . . . 10
⊢
(∫2‘(𝐹‘𝑘)) ∈ V |
343 | 341, 318,
342 | fvmpt 6884 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) = (∫2‘(𝐹‘𝑘))) |
344 | | peano2nn 11994 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
345 | | 2fveq3 6788 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑘 + 1) → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘(𝑘 + 1)))) |
346 | | fvex 6796 |
. . . . . . . . . . 11
⊢
(∫2‘(𝐹‘(𝑘 + 1))) ∈ V |
347 | 345, 318,
346 | fvmpt 6884 |
. . . . . . . . . 10
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) = (∫2‘(𝐹‘(𝑘 + 1)))) |
348 | 344, 347 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) = (∫2‘(𝐹‘(𝑘 + 1)))) |
349 | 343, 348 | breq12d 5088 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ (∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1))))) |
350 | 349 | ralbiia 3092 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1)))) |
351 | | fvoveq1 7307 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))) |
352 | 351 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (∫2‘(𝐹‘(𝑛 + 1))) = (∫2‘(𝐹‘(𝑘 + 1)))) |
353 | 341, 352 | breq12d 5088 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1))) ↔
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1))))) |
354 | 353 | cbvralvw 3384 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ (∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1))) ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ (∫2‘(𝐹‘(𝑘 + 1)))) |
355 | 350, 354 | bitr4i 277 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1)) ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ (∫2‘(𝐹‘(𝑛 + 1)))) |
356 | 340, 355 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1))) |
357 | 356 | r19.21bi 3135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘(𝑘 + 1))) |
358 | 324 | ralrimiva 3104 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) |
359 | 343 | breq1d 5085 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑘)) ≤ 𝑥)) |
360 | 359 | ralbiia 3092 |
. . . . . . . 8
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ 𝑥) |
361 | 341 | breq1d 5085 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → ((∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑘)) ≤ 𝑥)) |
362 | 361 | cbvralvw 3384 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℕ (∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ
(∫2‘(𝐹‘𝑘)) ≤ 𝑥) |
363 | 360, 362 | bitr4i 277 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑥) |
364 | | breq2 5079 |
. . . . . . . 8
⊢ (𝑥 = 𝑆 → ((∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ (∫2‘(𝐹‘𝑛)) ≤ 𝑆)) |
365 | 364 | ralbidv 3113 |
. . . . . . 7
⊢ (𝑥 = 𝑆 → (∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆)) |
366 | 363, 365 | bitrid 282 |
. . . . . 6
⊢ (𝑥 = 𝑆 → (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆)) |
367 | 366 | rspcev 3562 |
. . . . 5
⊢ ((𝑆 ∈ ℝ ∧
∀𝑛 ∈ ℕ
(∫2‘(𝐹‘𝑛)) ≤ 𝑆) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥) |
368 | 309, 358,
367 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥) |
369 | 1, 2, 327, 357, 368 | climsup 15390 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⇝ sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) |
370 | 327 | frnd 6617 |
. . . . 5
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ) |
371 | 318, 312 | dmmptd 6587 |
. . . . . . 7
⊢ (𝜑 → dom (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ℕ) |
372 | 240 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℕ ≠
∅) |
373 | 371, 372 | eqnetrd 3012 |
. . . . . 6
⊢ (𝜑 → dom (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) |
374 | | dm0rn0 5837 |
. . . . . . 7
⊢ (dom
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ∅ ↔ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) = ∅) |
375 | 374 | necon3bii 2997 |
. . . . . 6
⊢ (dom
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅ ↔ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) |
376 | 373, 375 | sylib 217 |
. . . . 5
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅) |
377 | 315, 318 | fnmpti 6585 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ |
378 | | breq1 5078 |
. . . . . . . . 9
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) → (𝑧 ≤ 𝑥 ↔ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) |
379 | 378 | ralrn 6973 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) |
380 | 377, 379 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) |
381 | 380 | rexbidv 3227 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ≤ 𝑥)) |
382 | 368, 381 | mpbird 256 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥) |
383 | | supxrre 13070 |
. . . . 5
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⊆ ℝ ∧ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))𝑧 ≤ 𝑥) → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) |
384 | 370, 376,
382, 383 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < )) |
385 | 323, 384 | eqtr2id 2792 |
. . 3
⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))), ℝ, < ) = 𝑆) |
386 | 369, 385 | breqtrd 5101 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛))) ⇝ 𝑆) |
387 | 17 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑇 ∈ ℝ) |
388 | 90 | ffvelrnda 6970 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐴‘𝑗) ∈ dom vol) |
389 | 276 | i1fres 24879 |
. . . . . . 7
⊢ ((𝐻 ∈ dom ∫1
∧ (𝐴‘𝑗) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom
∫1) |
390 | 10, 388, 389 | syl2an2r 682 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom
∫1) |
391 | | itg1cl 24858 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)) ∈ dom ∫1 →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) ∈ ℝ) |
392 | 390, 391 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑗), (𝐻‘𝑥), 0))) ∈ ℝ) |
393 | 387, 392 | remulcld 11014 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))) ∈ ℝ) |
394 | 393 | fmpttd 6998 |
. . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥),
0))))):ℕ⟶ℝ) |
395 | 394 | ffvelrnda 6970 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) ∈ ℝ) |
396 | 327 | ffvelrnda 6970 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) ∈ ℝ) |
397 | 329 | feq1d 6594 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛):ℝ⟶(0[,)+∞) ↔ (𝐹‘𝑘):ℝ⟶(0[,)+∞))) |
398 | 397 | cbvralvw 3384 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ (𝐹‘𝑛):ℝ⟶(0[,)+∞)
↔ ∀𝑘 ∈
ℕ (𝐹‘𝑘):ℝ⟶(0[,)+∞)) |
399 | 99, 398 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘):ℝ⟶(0[,)+∞)) |
400 | 399 | r19.21bi 3135 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):ℝ⟶(0[,)+∞)) |
401 | | fss 6626 |
. . . . 5
⊢ (((𝐹‘𝑘):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑘):ℝ⟶(0[,]+∞)) |
402 | 400, 306,
401 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):ℝ⟶(0[,]+∞)) |
403 | 23 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ℝ ∈
V) |
404 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑇 ∈ ℝ) |
405 | 404 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
406 | | fvex 6796 |
. . . . . . . . 9
⊢ (𝐻‘𝑥) ∈ V |
407 | | c0ex 10978 |
. . . . . . . . 9
⊢ 0 ∈
V |
408 | 406, 407 | ifex 4510 |
. . . . . . . 8
⊢ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0) ∈ V |
409 | 408 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0) ∈ V) |
410 | | fconstmpt 5650 |
. . . . . . . 8
⊢ (ℝ
× {𝑇}) = (𝑥 ∈ ℝ ↦ 𝑇) |
411 | 410 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (ℝ ×
{𝑇}) = (𝑥 ∈ ℝ ↦ 𝑇)) |
412 | | eqidd 2740 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) |
413 | 403, 405,
409, 411, 412 | offval2 7562 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) |
414 | | ovif2 7382 |
. . . . . . . 8
⊢ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), (𝑇 · 0)) |
415 | 47 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑇 ∈ ℂ) |
416 | 415 | mul01d 11183 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇 · 0) = 0) |
417 | 416 | ifeq2d 4480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), (𝑇 · 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) |
418 | 414, 417 | eqtrid 2791 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)) = if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) |
419 | 418 | mpteq2dv 5177 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (𝑇 · if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) |
420 | 413, 419 | eqtrd 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) |
421 | 293, 404 | i1fmulc 24877 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((ℝ ×
{𝑇}) ∘f
· (𝑥 ∈ ℝ
↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))) ∈ dom
∫1) |
422 | 420, 421 | eqeltrrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∈ dom
∫1) |
423 | | iftrue 4466 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴‘𝑘) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = (𝑇 · (𝐻‘𝑥))) |
424 | 423 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = (𝑇 · (𝐻‘𝑥))) |
425 | 329 | fveq1d 6785 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑘)‘𝑥)) |
426 | 425 | breq2d 5087 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → ((𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥) ↔ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥))) |
427 | 426 | rabbidv 3415 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) |
428 | 23 | rabex 5257 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} ∈ V |
429 | 427, 89, 428 | fvmpt 6884 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) |
430 | 429 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴‘𝑘) = {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) |
431 | 430 | eleq2d 2825 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴‘𝑘) ↔ 𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)})) |
432 | 431 | biimpa 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → 𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)}) |
433 | | rabid 3311 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} ↔ (𝑥 ∈ ℝ ∧ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥))) |
434 | 433 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑥 ∈ ℝ ∣ (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)} → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)) |
435 | 432, 434 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → (𝑇 · (𝐻‘𝑥)) ≤ ((𝐹‘𝑘)‘𝑥)) |
436 | 424, 435 | eqbrtrd 5097 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) |
437 | | iffalse 4469 |
. . . . . . . . 9
⊢ (¬
𝑥 ∈ (𝐴‘𝑘) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = 0) |
438 | 437 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) = 0) |
439 | 400 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞)) |
440 | | elrege0 13195 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞) ↔ (((𝐹‘𝑘)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑘)‘𝑥))) |
441 | 440 | simprbi 497 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑘)‘𝑥) ∈ (0[,)+∞) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) |
442 | 439, 441 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) |
443 | 442 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → 0 ≤ ((𝐹‘𝑘)‘𝑥)) |
444 | 438, 443 | eqbrtrd 5097 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐴‘𝑘)) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) |
445 | 436, 444 | pm2.61dan 810 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) |
446 | 445 | ralrimiva 3104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥)) |
447 | | ovex 7317 |
. . . . . . . 8
⊢ (𝑇 · (𝐻‘𝑥)) ∈ V |
448 | 447, 407 | ifex 4510 |
. . . . . . 7
⊢ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ∈ V |
449 | 448 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ∈ V) |
450 | | fvexd 6798 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑘)‘𝑥) ∈ V) |
451 | | eqidd 2740 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) |
452 | 400 | feqmptd 6846 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑘)‘𝑥))) |
453 | 403, 449,
450, 451, 452 | ofrfval2 7563 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0) ≤ ((𝐹‘𝑘)‘𝑥))) |
454 | 446, 453 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘)) |
455 | | itg2ub 24907 |
. . . 4
⊢ (((𝐹‘𝑘):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∈ dom ∫1 ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)) ∘r ≤ (𝐹‘𝑘)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) ≤ (∫2‘(𝐹‘𝑘))) |
456 | 402, 422,
454, 455 | syl3anc 1370 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0))) ≤ (∫2‘(𝐹‘𝑘))) |
457 | 301 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) |
458 | 293, 404 | itg1mulc 24878 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘((ℝ × {𝑇}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) = (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0))))) |
459 | 420 | fveq2d 6787 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) →
(∫1‘((ℝ × {𝑇}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝐻‘𝑥), 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)))) |
460 | 457, 458,
459 | 3eqtr2d 2785 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑘), (𝑇 · (𝐻‘𝑥)), 0)))) |
461 | 343 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘) = (∫2‘(𝐹‘𝑘))) |
462 | 456, 460,
461 | 3brtr4d 5107 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑇 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐴‘𝑗), (𝐻‘𝑥), 0)))))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦
(∫2‘(𝐹‘𝑛)))‘𝑘)) |
463 | 1, 2, 305, 386, 395, 396, 462 | climle 15358 |
1
⊢ (𝜑 → (𝑇 · (∫1‘𝐻)) ≤ 𝑆) |