MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Visualization version   GIF version

Theorem efopn 25247
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopn (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)

Proof of Theorem efopn
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
21cnfldtopon 23386 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
3 toponss 21530 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆𝐽) → 𝑆 ⊆ ℂ)
42, 3mpan 689 . . . . . 6 (𝑆𝐽𝑆 ⊆ ℂ)
54sselda 3942 . . . . 5 ((𝑆𝐽𝑥𝑆) → 𝑥 ∈ ℂ)
6 cnxmet 23376 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 pirp 25052 . . . . . . 7 π ∈ ℝ+
81cnfldtopn 23385 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
98mopni3 23099 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) ∧ π ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
107, 9mpan2 690 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
116, 10mp3an1 1445 . . . . 5 ((𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
12 imass2 5943 . . . . . . . 8 ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))
13 imassrn 5918 . . . . . . . . . . . . . 14 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ran exp
14 eff 15426 . . . . . . . . . . . . . . 15 exp:ℂ⟶ℂ
15 frn 6500 . . . . . . . . . . . . . . 15 (exp:ℂ⟶ℂ → ran exp ⊆ ℂ)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 ran exp ⊆ ℂ
1713, 16sstri 3951 . . . . . . . . . . . . 13 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ
18 sseqin2 4166 . . . . . . . . . . . . 13 ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ ↔ (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
1917, 18mpbi 233 . . . . . . . . . . . 12 (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))
20 rpxr 12386 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21 blssm 23023 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
226, 21mp3an1 1445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2320, 22sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2423ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2524sselda 3942 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ ℂ)
26 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
2725, 26subcld 10986 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ ℂ)
2827subid1d 10975 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) − 0) = (𝑦𝑥))
2928fveq2d 6656 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑦𝑥) − 0)) = (abs‘(𝑦𝑥)))
30 0cn 10622 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
31 eqid 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
3231cnmetdval 23374 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3327, 30, 32sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3431cnmetdval 23374 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3525, 26, 34syl2anc 587 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3629, 33, 353eqtr4d 2867 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (𝑦(abs ∘ − )𝑥))
37 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
386a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
39 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ+)
4039adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
4140rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
42 elbl3 22997 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4338, 41, 26, 25, 42syl22anc 837 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4437, 43mpbid 235 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) < 𝑟)
4536, 44eqbrtrd 5064 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) < 𝑟)
46 0cnd 10623 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
47 elbl3 22997 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4838, 41, 46, 27, 47syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4945, 48mpbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟))
50 efsub 15444 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
5125, 26, 50syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
52 fveqeq2 6661 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝑦𝑥) → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))))
5352rspcev 3598 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
5449, 51, 53syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
55 oveq1 7147 . . . . . . . . . . . . . . . . . . 19 ((exp‘𝑦) = 𝑧 → ((exp‘𝑦) / (exp‘𝑥)) = (𝑧 / (exp‘𝑥)))
5655eqeq2d 2833 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑦) = 𝑧 → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5756rexbidv 3283 . . . . . . . . . . . . . . . . 17 ((exp‘𝑦) = 𝑧 → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5854, 57syl5ibcom 248 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5958rexlimdva 3270 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
60 eqcom 2829 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ (𝑧 / (exp‘𝑥)) = (exp‘𝑤))
61 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑧 ∈ ℂ)
62 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
63 efcl 15427 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ∈ ℂ)
6539rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ*)
66 blssm 23023 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
676, 30, 65, 66mp3an12i 1462 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
6867sselda 3942 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ ℂ)
69 efcl 15427 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑤) ∈ ℂ)
71 efne0 15441 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7262, 71syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ≠ 0)
7361, 64, 70, 72divmuld 11427 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑧 / (exp‘𝑥)) = (exp‘𝑤) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7460, 73syl5bb 286 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7562, 68pncan2d 10988 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = 𝑤)
7668subid1d 10975 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 − 0) = 𝑤)
7775, 76eqtr4d 2860 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = (𝑤 − 0))
7877fveq2d 6656 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑥 + 𝑤) − 𝑥)) = (abs‘(𝑤 − 0)))
7962, 68addcld 10649 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ ℂ)
8031cnmetdval 23374 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 + 𝑤) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8179, 62, 80syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8231cnmetdval 23374 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8368, 30, 82sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8478, 81, 833eqtr4d 2867 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (𝑤(abs ∘ − )0))
85 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟))
866a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8739adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
8887rpxrd 12420 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
89 0cnd 10623 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
90 elbl3 22997 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9186, 88, 89, 68, 90syl22anc 837 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9285, 91mpbid 235 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) < 𝑟)
9384, 92eqbrtrd 5064 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟)
94 elbl3 22997 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝑤) ∈ ℂ)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9586, 88, 62, 79, 94syl22anc 837 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9693, 95mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
97 efadd 15438 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
9862, 68, 97syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
99 fveqeq2 6661 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 + 𝑤) → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))))
10099rspcev 3598 . . . . . . . . . . . . . . . . . . 19 (((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
10196, 98, 100syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
102 eqeq2 2834 . . . . . . . . . . . . . . . . . . 19 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘𝑦) = 𝑧))
103102rexbidv 3283 . . . . . . . . . . . . . . . . . 18 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
104101, 103syl5ibcom 248 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10574, 104sylbid 243 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
106105rexlimdva 3270 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10759, 106impbid 215 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
108 ffn 6494 . . . . . . . . . . . . . . . 16 (exp:ℂ⟶ℂ → exp Fn ℂ)
10914, 108ax-mp 5 . . . . . . . . . . . . . . 15 exp Fn ℂ
110 fvelimab 6719 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
111109, 24, 110sylancr 590 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
112 fvelimab 6719 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
113109, 67, 112sylancr 590 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
114107, 111, 1133bitr4d 314 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
115114rabbi2dva 4168 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
11619, 115syl5eqr 2871 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
117 eqid 2822 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) = (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥)))
118117mptpreima 6070 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))}
119116, 118eqtr4di 2875 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
12063ad2antrr 725 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ ℂ)
12171ad2antrr 725 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ≠ 0)
122117divccncf 23509 . . . . . . . . . . . . 13 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
123120, 121, 122syl2anc 587 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
1241cncfcn1 23514 . . . . . . . . . . . 12 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
125123, 124eleqtrdi 2924 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽))
1261efopnlem2 25246 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ+𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
127126adantll 713 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
128 cnima 21868 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽) ∧ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
129125, 127, 128syl2anc 587 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
130119, 129eqeltrd 2914 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
131 blcntr 23018 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
1326, 131mp3an1 1445 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
133 ffun 6497 . . . . . . . . . . . . 13 (exp:ℂ⟶ℂ → Fun exp)
13414, 133ax-mp 5 . . . . . . . . . . . 12 Fun exp
13514fdmi 6505 . . . . . . . . . . . . 13 dom exp = ℂ
13623, 135sseqtrrdi 3993 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp)
137 funfvima2 6976 . . . . . . . . . . . 12 ((Fun exp ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
138134, 136, 137sylancr 590 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
139132, 138mpd 15 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
140139adantr 484 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
141 eleq2 2902 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑥) ∈ 𝑦 ↔ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
142 sseq1 3967 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ⊆ (exp “ 𝑆) ↔ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆)))
143141, 142anbi12d 633 . . . . . . . . . . 11 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))))
144143rspcev 3598 . . . . . . . . . 10 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
145144expr 460 . . . . . . . . 9 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
146130, 140, 145syl2anc 587 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
14712, 146syl5 34 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
148147expimpd 457 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → ((𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
149148rexlimdva 3270 . . . . 5 (𝑥 ∈ ℂ → (∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
1505, 11, 149sylc 65 . . . 4 ((𝑆𝐽𝑥𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
151150ralrimiva 3174 . . 3 (𝑆𝐽 → ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
152 eleq1 2901 . . . . . . 7 (𝑧 = (exp‘𝑥) → (𝑧𝑦 ↔ (exp‘𝑥) ∈ 𝑦))
153152anbi1d 632 . . . . . 6 (𝑧 = (exp‘𝑥) → ((𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
154153rexbidv 3283 . . . . 5 (𝑧 = (exp‘𝑥) → (∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
155154ralima 6983 . . . 4 ((exp Fn ℂ ∧ 𝑆 ⊆ ℂ) → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
156109, 4, 155sylancr 590 . . 3 (𝑆𝐽 → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
157151, 156mpbird 260 . 2 (𝑆𝐽 → ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
1581cnfldtop 23387 . . 3 𝐽 ∈ Top
159 eltop2 21578 . . 3 (𝐽 ∈ Top → ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆))))
160158, 159ax-mp 5 . 2 ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
161157, 160sylibr 237 1 (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  wrex 3131  {crab 3134  cin 3907  wss 3908   class class class wbr 5042  cmpt 5122  ccnv 5531  dom cdm 5532  ran crn 5533  cima 5535  ccom 5536  Fun wfun 6328   Fn wfn 6329  wf 6330  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cmin 10859   / cdiv 11286  +crp 12377  abscabs 14584  expce 15406  πcpi 15411  TopOpenctopn 16686  ∞Metcxmet 20074  ballcbl 20076  fldccnfld 20089  Topctop 21496  TopOnctopon 21513   Cn ccn 21827  cnccncf 23479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-tan 15416  df-pi 15417  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-cmp 21990  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-log 25146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator