MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Visualization version   GIF version

Theorem efopn 25801
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopn (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)

Proof of Theorem efopn
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
21cnfldtopon 23934 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
3 toponss 22064 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆𝐽) → 𝑆 ⊆ ℂ)
42, 3mpan 687 . . . . . 6 (𝑆𝐽𝑆 ⊆ ℂ)
54sselda 3921 . . . . 5 ((𝑆𝐽𝑥𝑆) → 𝑥 ∈ ℂ)
6 cnxmet 23924 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 pirp 25606 . . . . . . 7 π ∈ ℝ+
81cnfldtopn 23933 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
98mopni3 23638 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) ∧ π ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
107, 9mpan2 688 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
116, 10mp3an1 1447 . . . . 5 ((𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
12 imass2 6004 . . . . . . . 8 ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))
13 imassrn 5974 . . . . . . . . . . . . . 14 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ran exp
14 eff 15779 . . . . . . . . . . . . . . 15 exp:ℂ⟶ℂ
15 frn 6600 . . . . . . . . . . . . . . 15 (exp:ℂ⟶ℂ → ran exp ⊆ ℂ)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 ran exp ⊆ ℂ
1713, 16sstri 3930 . . . . . . . . . . . . 13 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ
18 sseqin2 4150 . . . . . . . . . . . . 13 ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ ↔ (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
1917, 18mpbi 229 . . . . . . . . . . . 12 (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))
20 rpxr 12727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21 blssm 23559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
226, 21mp3an1 1447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2320, 22sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2423ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2524sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ ℂ)
26 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
2725, 26subcld 11320 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ ℂ)
2827subid1d 11309 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) − 0) = (𝑦𝑥))
2928fveq2d 6771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑦𝑥) − 0)) = (abs‘(𝑦𝑥)))
30 0cn 10955 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
31 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
3231cnmetdval 23922 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3327, 30, 32sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3431cnmetdval 23922 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3525, 26, 34syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3629, 33, 353eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (𝑦(abs ∘ − )𝑥))
37 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
386a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
39 simpllr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ+)
4039adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
4140rpxrd 12761 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
42 elbl3 23533 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4338, 41, 26, 25, 42syl22anc 836 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4437, 43mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) < 𝑟)
4536, 44eqbrtrd 5096 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) < 𝑟)
46 0cnd 10956 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
47 elbl3 23533 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4838, 41, 46, 27, 47syl22anc 836 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4945, 48mpbird 256 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟))
50 efsub 15797 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
5125, 26, 50syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
52 fveqeq2 6776 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝑦𝑥) → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))))
5352rspcev 3560 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
5449, 51, 53syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
55 oveq1 7275 . . . . . . . . . . . . . . . . . . 19 ((exp‘𝑦) = 𝑧 → ((exp‘𝑦) / (exp‘𝑥)) = (𝑧 / (exp‘𝑥)))
5655eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑦) = 𝑧 → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5756rexbidv 3224 . . . . . . . . . . . . . . . . 17 ((exp‘𝑦) = 𝑧 → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5854, 57syl5ibcom 244 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5958rexlimdva 3211 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
60 eqcom 2745 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ (𝑧 / (exp‘𝑥)) = (exp‘𝑤))
61 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑧 ∈ ℂ)
62 simp-4l 780 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
63 efcl 15780 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ∈ ℂ)
6539rpxrd 12761 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ*)
66 blssm 23559 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
676, 30, 65, 66mp3an12i 1464 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
6867sselda 3921 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ ℂ)
69 efcl 15780 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑤) ∈ ℂ)
71 efne0 15794 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7262, 71syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ≠ 0)
7361, 64, 70, 72divmuld 11761 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑧 / (exp‘𝑥)) = (exp‘𝑤) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7460, 73syl5bb 283 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7562, 68pncan2d 11322 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = 𝑤)
7668subid1d 11309 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 − 0) = 𝑤)
7775, 76eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = (𝑤 − 0))
7877fveq2d 6771 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑥 + 𝑤) − 𝑥)) = (abs‘(𝑤 − 0)))
7962, 68addcld 10982 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ ℂ)
8031cnmetdval 23922 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 + 𝑤) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8179, 62, 80syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8231cnmetdval 23922 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8368, 30, 82sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8478, 81, 833eqtr4d 2788 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (𝑤(abs ∘ − )0))
85 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟))
866a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8739adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
8887rpxrd 12761 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
89 0cnd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
90 elbl3 23533 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9186, 88, 89, 68, 90syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9285, 91mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) < 𝑟)
9384, 92eqbrtrd 5096 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟)
94 elbl3 23533 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝑤) ∈ ℂ)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9586, 88, 62, 79, 94syl22anc 836 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9693, 95mpbird 256 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
97 efadd 15791 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
9862, 68, 97syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
99 fveqeq2 6776 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 + 𝑤) → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))))
10099rspcev 3560 . . . . . . . . . . . . . . . . . . 19 (((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
10196, 98, 100syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
102 eqeq2 2750 . . . . . . . . . . . . . . . . . . 19 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘𝑦) = 𝑧))
103102rexbidv 3224 . . . . . . . . . . . . . . . . . 18 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
104101, 103syl5ibcom 244 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10574, 104sylbid 239 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
106105rexlimdva 3211 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10759, 106impbid 211 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
108 ffn 6593 . . . . . . . . . . . . . . . 16 (exp:ℂ⟶ℂ → exp Fn ℂ)
10914, 108ax-mp 5 . . . . . . . . . . . . . . 15 exp Fn ℂ
110 fvelimab 6834 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
111109, 24, 110sylancr 587 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
112 fvelimab 6834 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
113109, 67, 112sylancr 587 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
114107, 111, 1133bitr4d 311 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
115114rabbi2dva 4152 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
11619, 115eqtr3id 2792 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
117 eqid 2738 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) = (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥)))
118117mptpreima 6135 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))}
119116, 118eqtr4di 2796 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
12063ad2antrr 723 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ ℂ)
12171ad2antrr 723 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ≠ 0)
122117divccncf 24057 . . . . . . . . . . . . 13 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
123120, 121, 122syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
1241cncfcn1 24062 . . . . . . . . . . . 12 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
125123, 124eleqtrdi 2849 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽))
1261efopnlem2 25800 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ+𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
127126adantll 711 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
128 cnima 22404 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽) ∧ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
129125, 127, 128syl2anc 584 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
130119, 129eqeltrd 2839 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
131 blcntr 23554 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
1326, 131mp3an1 1447 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
133 ffun 6596 . . . . . . . . . . . . 13 (exp:ℂ⟶ℂ → Fun exp)
13414, 133ax-mp 5 . . . . . . . . . . . 12 Fun exp
13514fdmi 6605 . . . . . . . . . . . . 13 dom exp = ℂ
13623, 135sseqtrrdi 3972 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp)
137 funfvima2 7100 . . . . . . . . . . . 12 ((Fun exp ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
138134, 136, 137sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
139132, 138mpd 15 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
140139adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
141 eleq2 2827 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑥) ∈ 𝑦 ↔ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
142 sseq1 3946 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ⊆ (exp “ 𝑆) ↔ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆)))
143141, 142anbi12d 631 . . . . . . . . . . 11 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))))
144143rspcev 3560 . . . . . . . . . 10 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
145144expr 457 . . . . . . . . 9 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
146130, 140, 145syl2anc 584 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
14712, 146syl5 34 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
148147expimpd 454 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → ((𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
149148rexlimdva 3211 . . . . 5 (𝑥 ∈ ℂ → (∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
1505, 11, 149sylc 65 . . . 4 ((𝑆𝐽𝑥𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
151150ralrimiva 3113 . . 3 (𝑆𝐽 → ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
152 eleq1 2826 . . . . . . 7 (𝑧 = (exp‘𝑥) → (𝑧𝑦 ↔ (exp‘𝑥) ∈ 𝑦))
153152anbi1d 630 . . . . . 6 (𝑧 = (exp‘𝑥) → ((𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
154153rexbidv 3224 . . . . 5 (𝑧 = (exp‘𝑥) → (∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
155154ralima 7107 . . . 4 ((exp Fn ℂ ∧ 𝑆 ⊆ ℂ) → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
156109, 4, 155sylancr 587 . . 3 (𝑆𝐽 → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
157151, 156mpbird 256 . 2 (𝑆𝐽 → ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
1581cnfldtop 23935 . . 3 𝐽 ∈ Top
159 eltop2 22113 . . 3 (𝐽 ∈ Top → ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆))))
160158, 159ax-mp 5 . 2 ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
161157, 160sylibr 233 1 (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  ccnv 5584  dom cdm 5585  ran crn 5586  cima 5588  ccom 5589  Fun wfun 6421   Fn wfn 6422  wf 6423  cfv 6427  (class class class)co 7268  cc 10857  0cc0 10859   + caddc 10862   · cmul 10864  *cxr 10996   < clt 10997  cmin 11193   / cdiv 11620  +crp 12718  abscabs 14933  expce 15759  πcpi 15764  TopOpenctopn 17120  ∞Metcxmet 20570  ballcbl 20572  fldccnfld 20585  Topctop 22030  TopOnctopon 22047   Cn ccn 22363  cnccncf 24027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937  ax-addf 10938  ax-mulf 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7704  df-1st 7821  df-2nd 7822  df-supp 7966  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-er 8486  df-map 8605  df-pm 8606  df-ixp 8674  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-z 12308  df-dec 12426  df-uz 12571  df-q 12677  df-rp 12719  df-xneg 12836  df-xadd 12837  df-xmul 12838  df-ioo 13071  df-ioc 13072  df-ico 13073  df-icc 13074  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-seq 13710  df-exp 13771  df-fac 13976  df-bc 14005  df-hash 14033  df-shft 14766  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-limsup 15168  df-clim 15185  df-rlim 15186  df-sum 15386  df-ef 15765  df-sin 15767  df-cos 15768  df-tan 15769  df-pi 15770  df-struct 16836  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-plusg 16963  df-mulr 16964  df-starv 16965  df-sca 16966  df-vsca 16967  df-ip 16968  df-tset 16969  df-ple 16970  df-ds 16972  df-unif 16973  df-hom 16974  df-cco 16975  df-rest 17121  df-topn 17122  df-0g 17140  df-gsum 17141  df-topgen 17142  df-pt 17143  df-prds 17146  df-xrs 17201  df-qtop 17206  df-imas 17207  df-xps 17209  df-mre 17283  df-mrc 17284  df-acs 17286  df-mgm 18314  df-sgrp 18363  df-mnd 18374  df-submnd 18419  df-mulg 18689  df-cntz 18911  df-cmn 19376  df-psmet 20577  df-xmet 20578  df-met 20579  df-bl 20580  df-mopn 20581  df-fbas 20582  df-fg 20583  df-cnfld 20586  df-top 22031  df-topon 22048  df-topsp 22070  df-bases 22084  df-cld 22158  df-ntr 22159  df-cls 22160  df-nei 22237  df-lp 22275  df-perf 22276  df-cn 22366  df-cnp 22367  df-haus 22454  df-cmp 22526  df-tx 22701  df-hmeo 22894  df-fil 22985  df-fm 23077  df-flim 23078  df-flf 23079  df-xms 23461  df-ms 23462  df-tms 23463  df-cncf 24029  df-limc 25018  df-dv 25019  df-log 25700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator