MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Visualization version   GIF version

Theorem efopn 26166
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpenβ€˜β„‚fld)
Assertion
Ref Expression
efopn (𝑆 ∈ 𝐽 β†’ (exp β€œ 𝑆) ∈ 𝐽)

Proof of Theorem efopn
Dummy variables 𝑀 π‘Ÿ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8 𝐽 = (TopOpenβ€˜β„‚fld)
21cnfldtopon 24299 . . . . . . 7 𝐽 ∈ (TopOnβ€˜β„‚)
3 toponss 22429 . . . . . . 7 ((𝐽 ∈ (TopOnβ€˜β„‚) ∧ 𝑆 ∈ 𝐽) β†’ 𝑆 βŠ† β„‚)
42, 3mpan 689 . . . . . 6 (𝑆 ∈ 𝐽 β†’ 𝑆 βŠ† β„‚)
54sselda 3983 . . . . 5 ((𝑆 ∈ 𝐽 ∧ π‘₯ ∈ 𝑆) β†’ π‘₯ ∈ β„‚)
6 cnxmet 24289 . . . . . 6 (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚)
7 pirp 25971 . . . . . . 7 Ο€ ∈ ℝ+
81cnfldtopn 24298 . . . . . . . 8 𝐽 = (MetOpenβ€˜(abs ∘ βˆ’ ))
98mopni3 24003 . . . . . . 7 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 𝑆 ∈ 𝐽 ∧ π‘₯ ∈ 𝑆) ∧ Ο€ ∈ ℝ+) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘Ÿ < Ο€ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆))
107, 9mpan2 690 . . . . . 6 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 𝑆 ∈ 𝐽 ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘Ÿ < Ο€ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆))
116, 10mp3an1 1449 . . . . 5 ((𝑆 ∈ 𝐽 ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘Ÿ < Ο€ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆))
12 imass2 6102 . . . . . . . 8 ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆 β†’ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆))
13 imassrn 6071 . . . . . . . . . . . . . 14 (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† ran exp
14 eff 16025 . . . . . . . . . . . . . . 15 exp:β„‚βŸΆβ„‚
15 frn 6725 . . . . . . . . . . . . . . 15 (exp:β„‚βŸΆβ„‚ β†’ ran exp βŠ† β„‚)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 ran exp βŠ† β„‚
1713, 16sstri 3992 . . . . . . . . . . . . 13 (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† β„‚
18 sseqin2 4216 . . . . . . . . . . . . 13 ((exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† β„‚ ↔ (β„‚ ∩ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) = (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
1917, 18mpbi 229 . . . . . . . . . . . 12 (β„‚ ∩ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) = (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
20 rpxr 12983 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
21 blssm 23924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
226, 21mp3an1 1449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
2320, 22sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
2423ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
2524sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 𝑦 ∈ β„‚)
26 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘₯ ∈ β„‚)
2725, 26subcld 11571 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦 βˆ’ π‘₯) ∈ β„‚)
2827subid1d 11560 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑦 βˆ’ π‘₯) βˆ’ 0) = (𝑦 βˆ’ π‘₯))
2928fveq2d 6896 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (absβ€˜((𝑦 βˆ’ π‘₯) βˆ’ 0)) = (absβ€˜(𝑦 βˆ’ π‘₯)))
30 0cn 11206 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ β„‚
31 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
3231cnmetdval 24287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 βˆ’ π‘₯) ∈ β„‚ ∧ 0 ∈ β„‚) β†’ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) = (absβ€˜((𝑦 βˆ’ π‘₯) βˆ’ 0)))
3327, 30, 32sylancl 587 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) = (absβ€˜((𝑦 βˆ’ π‘₯) βˆ’ 0)))
3431cnmetdval 24287 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (𝑦(abs ∘ βˆ’ )π‘₯) = (absβ€˜(𝑦 βˆ’ π‘₯)))
3525, 26, 34syl2anc 585 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦(abs ∘ βˆ’ )π‘₯) = (absβ€˜(𝑦 βˆ’ π‘₯)))
3629, 33, 353eqtr4d 2783 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) = (𝑦(abs ∘ βˆ’ )π‘₯))
37 simpr 486 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
386a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
39 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ π‘Ÿ ∈ ℝ+)
4039adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ+)
4140rpxrd 13017 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ*)
42 elbl3 23898 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ (π‘₯ ∈ β„‚ ∧ 𝑦 ∈ β„‚)) β†’ (𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ (𝑦(abs ∘ βˆ’ )π‘₯) < π‘Ÿ))
4338, 41, 26, 25, 42syl22anc 838 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ (𝑦(abs ∘ βˆ’ )π‘₯) < π‘Ÿ))
4437, 43mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦(abs ∘ βˆ’ )π‘₯) < π‘Ÿ)
4536, 44eqbrtrd 5171 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) < π‘Ÿ)
46 0cnd 11207 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 0 ∈ β„‚)
47 elbl3 23898 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ (0 ∈ β„‚ ∧ (𝑦 βˆ’ π‘₯) ∈ β„‚)) β†’ ((𝑦 βˆ’ π‘₯) ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) < π‘Ÿ))
4838, 41, 46, 27, 47syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑦 βˆ’ π‘₯) ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((𝑦 βˆ’ π‘₯)(abs ∘ βˆ’ )0) < π‘Ÿ))
4945, 48mpbird 257 . . . . . . . . . . . . . . . . . 18 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦 βˆ’ π‘₯) ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
50 efsub 16043 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ (expβ€˜(𝑦 βˆ’ π‘₯)) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)))
5125, 26, 50syl2anc 585 . . . . . . . . . . . . . . . . . 18 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (expβ€˜(𝑦 βˆ’ π‘₯)) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)))
52 fveqeq2 6901 . . . . . . . . . . . . . . . . . . 19 (𝑀 = (𝑦 βˆ’ π‘₯) β†’ ((expβ€˜π‘€) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)) ↔ (expβ€˜(𝑦 βˆ’ π‘₯)) = ((expβ€˜π‘¦) / (expβ€˜π‘₯))))
5352rspcev 3613 . . . . . . . . . . . . . . . . . 18 (((𝑦 βˆ’ π‘₯) ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ (expβ€˜(𝑦 βˆ’ π‘₯)) = ((expβ€˜π‘¦) / (expβ€˜π‘₯))) β†’ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)))
5449, 51, 53syl2anc 585 . . . . . . . . . . . . . . . . 17 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)))
55 oveq1 7416 . . . . . . . . . . . . . . . . . . 19 ((expβ€˜π‘¦) = 𝑧 β†’ ((expβ€˜π‘¦) / (expβ€˜π‘₯)) = (𝑧 / (expβ€˜π‘₯)))
5655eqeq2d 2744 . . . . . . . . . . . . . . . . . 18 ((expβ€˜π‘¦) = 𝑧 β†’ ((expβ€˜π‘€) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)) ↔ (expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
5756rexbidv 3179 . . . . . . . . . . . . . . . . 17 ((expβ€˜π‘¦) = 𝑧 β†’ (βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = ((expβ€˜π‘¦) / (expβ€˜π‘₯)) ↔ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
5854, 57syl5ibcom 244 . . . . . . . . . . . . . . . 16 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑦 ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((expβ€˜π‘¦) = 𝑧 β†’ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
5958rexlimdva 3156 . . . . . . . . . . . . . . 15 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧 β†’ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
60 eqcom 2740 . . . . . . . . . . . . . . . . . 18 ((expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯)) ↔ (𝑧 / (expβ€˜π‘₯)) = (expβ€˜π‘€))
61 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 𝑧 ∈ β„‚)
62 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘₯ ∈ β„‚)
63 efcl 16026 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ β„‚ β†’ (expβ€˜π‘₯) ∈ β„‚)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (expβ€˜π‘₯) ∈ β„‚)
6539rpxrd 13017 . . . . . . . . . . . . . . . . . . . . . 22 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ π‘Ÿ ∈ ℝ*)
66 blssm 23924 . . . . . . . . . . . . . . . . . . . . . 22 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ 0 ∈ β„‚ ∧ π‘Ÿ ∈ ℝ*) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
676, 30, 65, 66mp3an12i 1466 . . . . . . . . . . . . . . . . . . . . 21 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚)
6867sselda 3983 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 𝑀 ∈ β„‚)
69 efcl 16026 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ β„‚ β†’ (expβ€˜π‘€) ∈ β„‚)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (expβ€˜π‘€) ∈ β„‚)
71 efne0 16040 . . . . . . . . . . . . . . . . . . . 20 (π‘₯ ∈ β„‚ β†’ (expβ€˜π‘₯) β‰  0)
7262, 71syl 17 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (expβ€˜π‘₯) β‰  0)
7361, 64, 70, 72divmuld 12012 . . . . . . . . . . . . . . . . . 18 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((𝑧 / (expβ€˜π‘₯)) = (expβ€˜π‘€) ↔ ((expβ€˜π‘₯) Β· (expβ€˜π‘€)) = 𝑧))
7460, 73bitrid 283 . . . . . . . . . . . . . . . . 17 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯)) ↔ ((expβ€˜π‘₯) Β· (expβ€˜π‘€)) = 𝑧))
7562, 68pncan2d 11573 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀) βˆ’ π‘₯) = 𝑀)
7668subid1d 11560 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑀 βˆ’ 0) = 𝑀)
7775, 76eqtr4d 2776 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀) βˆ’ π‘₯) = (𝑀 βˆ’ 0))
7877fveq2d 6896 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (absβ€˜((π‘₯ + 𝑀) βˆ’ π‘₯)) = (absβ€˜(𝑀 βˆ’ 0)))
7962, 68addcld 11233 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (π‘₯ + 𝑀) ∈ β„‚)
8031cnmetdval 24287 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘₯ + 𝑀) ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) = (absβ€˜((π‘₯ + 𝑀) βˆ’ π‘₯)))
8179, 62, 80syl2anc 585 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) = (absβ€˜((π‘₯ + 𝑀) βˆ’ π‘₯)))
8231cnmetdval 24287 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ β„‚ ∧ 0 ∈ β„‚) β†’ (𝑀(abs ∘ βˆ’ )0) = (absβ€˜(𝑀 βˆ’ 0)))
8368, 30, 82sylancl 587 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑀(abs ∘ βˆ’ )0) = (absβ€˜(𝑀 βˆ’ 0)))
8478, 81, 833eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) = (𝑀(abs ∘ βˆ’ )0))
85 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
866a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚))
8739adantr 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ+)
8887rpxrd 13017 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ π‘Ÿ ∈ ℝ*)
89 0cnd 11207 . . . . . . . . . . . . . . . . . . . . . . 23 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ 0 ∈ β„‚)
90 elbl3 23898 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ (0 ∈ β„‚ ∧ 𝑀 ∈ β„‚)) β†’ (𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ (𝑀(abs ∘ βˆ’ )0) < π‘Ÿ))
9186, 88, 89, 68, 90syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ (𝑀(abs ∘ βˆ’ )0) < π‘Ÿ))
9285, 91mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑀(abs ∘ βˆ’ )0) < π‘Ÿ)
9384, 92eqbrtrd 5171 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) < π‘Ÿ)
94 elbl3 23898 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘Ÿ ∈ ℝ*) ∧ (π‘₯ ∈ β„‚ ∧ (π‘₯ + 𝑀) ∈ β„‚)) β†’ ((π‘₯ + 𝑀) ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) < π‘Ÿ))
9586, 88, 62, 79, 94syl22anc 838 . . . . . . . . . . . . . . . . . . . 20 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((π‘₯ + 𝑀) ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ↔ ((π‘₯ + 𝑀)(abs ∘ βˆ’ )π‘₯) < π‘Ÿ))
9693, 95mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (π‘₯ + 𝑀) ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
97 efadd 16037 . . . . . . . . . . . . . . . . . . . 20 ((π‘₯ ∈ β„‚ ∧ 𝑀 ∈ β„‚) β†’ (expβ€˜(π‘₯ + 𝑀)) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)))
9862, 68, 97syl2anc 585 . . . . . . . . . . . . . . . . . . 19 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (expβ€˜(π‘₯ + 𝑀)) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)))
99 fveqeq2 6901 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (π‘₯ + 𝑀) β†’ ((expβ€˜π‘¦) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)) ↔ (expβ€˜(π‘₯ + 𝑀)) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€))))
10099rspcev 3613 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ + 𝑀) ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) ∧ (expβ€˜(π‘₯ + 𝑀)) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€))) β†’ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)))
10196, 98, 100syl2anc 585 . . . . . . . . . . . . . . . . . 18 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)))
102 eqeq2 2745 . . . . . . . . . . . . . . . . . . 19 (((expβ€˜π‘₯) Β· (expβ€˜π‘€)) = 𝑧 β†’ ((expβ€˜π‘¦) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)) ↔ (expβ€˜π‘¦) = 𝑧))
103102rexbidv 3179 . . . . . . . . . . . . . . . . . 18 (((expβ€˜π‘₯) Β· (expβ€˜π‘€)) = 𝑧 β†’ (βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = ((expβ€˜π‘₯) Β· (expβ€˜π‘€)) ↔ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
104101, 103syl5ibcom 244 . . . . . . . . . . . . . . . . 17 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (((expβ€˜π‘₯) Β· (expβ€˜π‘€)) = 𝑧 β†’ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
10574, 104sylbid 239 . . . . . . . . . . . . . . . 16 (((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) ∧ 𝑀 ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯)) β†’ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
106105rexlimdva 3156 . . . . . . . . . . . . . . 15 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯)) β†’ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
10759, 106impbid 211 . . . . . . . . . . . . . 14 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧 ↔ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
108 ffn 6718 . . . . . . . . . . . . . . . 16 (exp:β„‚βŸΆβ„‚ β†’ exp Fn β„‚)
10914, 108ax-mp 5 . . . . . . . . . . . . . . 15 exp Fn β„‚
110 fvelimab 6965 . . . . . . . . . . . . . . 15 ((exp Fn β„‚ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚) β†’ (𝑧 ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ↔ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
111109, 24, 110sylancr 588 . . . . . . . . . . . . . 14 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (𝑧 ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ↔ βˆƒπ‘¦ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘¦) = 𝑧))
112 fvelimab 6965 . . . . . . . . . . . . . . 15 ((exp Fn β„‚ ∧ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† β„‚) β†’ ((𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ↔ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
113109, 67, 112sylancr 588 . . . . . . . . . . . . . 14 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ ((𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ↔ βˆƒπ‘€ ∈ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)(expβ€˜π‘€) = (𝑧 / (expβ€˜π‘₯))))
114107, 111, 1133bitr4d 311 . . . . . . . . . . . . 13 ((((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) ∧ 𝑧 ∈ β„‚) β†’ (𝑧 ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ↔ (𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))))
115114rabbi2dva 4218 . . . . . . . . . . . 12 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (β„‚ ∩ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) = {𝑧 ∈ β„‚ ∣ (𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))})
11619, 115eqtr3id 2787 . . . . . . . . . . 11 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) = {𝑧 ∈ β„‚ ∣ (𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))})
117 eqid 2733 . . . . . . . . . . . 12 (𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) = (𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯)))
118117mptpreima 6238 . . . . . . . . . . 11 (β—‘(𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) β€œ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) = {𝑧 ∈ β„‚ ∣ (𝑧 / (expβ€˜π‘₯)) ∈ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))}
119116, 118eqtr4di 2791 . . . . . . . . . 10 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) = (β—‘(𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) β€œ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))))
12063ad2antrr 725 . . . . . . . . . . . . 13 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (expβ€˜π‘₯) ∈ β„‚)
12171ad2antrr 725 . . . . . . . . . . . . 13 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (expβ€˜π‘₯) β‰  0)
122117divccncf 24422 . . . . . . . . . . . . 13 (((expβ€˜π‘₯) ∈ β„‚ ∧ (expβ€˜π‘₯) β‰  0) β†’ (𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) ∈ (ℂ–cnβ†’β„‚))
123120, 121, 122syl2anc 585 . . . . . . . . . . . 12 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) ∈ (ℂ–cnβ†’β„‚))
1241cncfcn1 24427 . . . . . . . . . . . 12 (ℂ–cnβ†’β„‚) = (𝐽 Cn 𝐽)
125123, 124eleqtrdi 2844 . . . . . . . . . . 11 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) ∈ (𝐽 Cn 𝐽))
1261efopnlem2 26165 . . . . . . . . . . . 12 ((π‘Ÿ ∈ ℝ+ ∧ π‘Ÿ < Ο€) β†’ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽)
127126adantll 713 . . . . . . . . . . 11 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽)
128 cnima 22769 . . . . . . . . . . 11 (((𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) ∈ (𝐽 Cn 𝐽) ∧ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽) β†’ (β—‘(𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) β€œ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) ∈ 𝐽)
129125, 127, 128syl2anc 585 . . . . . . . . . 10 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (β—‘(𝑧 ∈ β„‚ ↦ (𝑧 / (expβ€˜π‘₯))) β€œ (exp β€œ (0(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) ∈ 𝐽)
130119, 129eqeltrd 2834 . . . . . . . . 9 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽)
131 blcntr 23919 . . . . . . . . . . . 12 (((abs ∘ βˆ’ ) ∈ (∞Metβ€˜β„‚) ∧ π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
1326, 131mp3an1 1449 . . . . . . . . . . 11 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))
133 ffun 6721 . . . . . . . . . . . . 13 (exp:β„‚βŸΆβ„‚ β†’ Fun exp)
13414, 133ax-mp 5 . . . . . . . . . . . 12 Fun exp
13514fdmi 6730 . . . . . . . . . . . . 13 dom exp = β„‚
13623, 135sseqtrrdi 4034 . . . . . . . . . . . 12 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† dom exp)
137 funfvima2 7233 . . . . . . . . . . . 12 ((Fun exp ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† dom exp) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) β†’ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))))
138134, 136, 137sylancr 588 . . . . . . . . . . 11 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) β†’ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))))
139132, 138mpd 15 . . . . . . . . . 10 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
140139adantr 482 . . . . . . . . 9 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)))
141 eleq2 2823 . . . . . . . . . . . 12 (𝑦 = (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ ((expβ€˜π‘₯) ∈ 𝑦 ↔ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))))
142 sseq1 4008 . . . . . . . . . . . 12 (𝑦 = (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (𝑦 βŠ† (exp β€œ 𝑆) ↔ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆)))
143141, 142anbi12d 632 . . . . . . . . . . 11 (𝑦 = (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) β†’ (((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)) ↔ ((expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∧ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆))))
144143rspcev 3613 . . . . . . . . . 10 (((exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽 ∧ ((expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∧ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆))) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)))
145144expr 458 . . . . . . . . 9 (((exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) ∈ 𝐽 ∧ (expβ€˜π‘₯) ∈ (exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ))) β†’ ((exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
146130, 140, 145syl2anc 585 . . . . . . . 8 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ ((exp β€œ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ)) βŠ† (exp β€œ 𝑆) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
14712, 146syl5 34 . . . . . . 7 (((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) ∧ π‘Ÿ < Ο€) β†’ ((π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆 β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
148147expimpd 455 . . . . . 6 ((π‘₯ ∈ β„‚ ∧ π‘Ÿ ∈ ℝ+) β†’ ((π‘Ÿ < Ο€ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
149148rexlimdva 3156 . . . . 5 (π‘₯ ∈ β„‚ β†’ (βˆƒπ‘Ÿ ∈ ℝ+ (π‘Ÿ < Ο€ ∧ (π‘₯(ballβ€˜(abs ∘ βˆ’ ))π‘Ÿ) βŠ† 𝑆) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
1505, 11, 149sylc 65 . . . 4 ((𝑆 ∈ 𝐽 ∧ π‘₯ ∈ 𝑆) β†’ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)))
151150ralrimiva 3147 . . 3 (𝑆 ∈ 𝐽 β†’ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)))
152 eleq1 2822 . . . . . . 7 (𝑧 = (expβ€˜π‘₯) β†’ (𝑧 ∈ 𝑦 ↔ (expβ€˜π‘₯) ∈ 𝑦))
153152anbi1d 631 . . . . . 6 (𝑧 = (expβ€˜π‘₯) β†’ ((𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)) ↔ ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
154153rexbidv 3179 . . . . 5 (𝑧 = (expβ€˜π‘₯) β†’ (βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)) ↔ βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
155154ralima 7240 . . . 4 ((exp Fn β„‚ ∧ 𝑆 βŠ† β„‚) β†’ (βˆ€π‘§ ∈ (exp β€œ 𝑆)βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)) ↔ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
156109, 4, 155sylancr 588 . . 3 (𝑆 ∈ 𝐽 β†’ (βˆ€π‘§ ∈ (exp β€œ 𝑆)βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)) ↔ βˆ€π‘₯ ∈ 𝑆 βˆƒπ‘¦ ∈ 𝐽 ((expβ€˜π‘₯) ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
157151, 156mpbird 257 . 2 (𝑆 ∈ 𝐽 β†’ βˆ€π‘§ ∈ (exp β€œ 𝑆)βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)))
1581cnfldtop 24300 . . 3 𝐽 ∈ Top
159 eltop2 22478 . . 3 (𝐽 ∈ Top β†’ ((exp β€œ 𝑆) ∈ 𝐽 ↔ βˆ€π‘§ ∈ (exp β€œ 𝑆)βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆))))
160158, 159ax-mp 5 . 2 ((exp β€œ 𝑆) ∈ 𝐽 ↔ βˆ€π‘§ ∈ (exp β€œ 𝑆)βˆƒπ‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ∧ 𝑦 βŠ† (exp β€œ 𝑆)))
161157, 160sylibr 233 1 (𝑆 ∈ 𝐽 β†’ (exp β€œ 𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   ∩ cin 3948   βŠ† wss 3949   class class class wbr 5149   ↦ cmpt 5232  β—‘ccnv 5676  dom cdm 5677  ran crn 5678   β€œ cima 5680   ∘ ccom 5681  Fun wfun 6538   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  0cc0 11110   + caddc 11113   Β· cmul 11115  β„*cxr 11247   < clt 11248   βˆ’ cmin 11444   / cdiv 11871  β„+crp 12974  abscabs 15181  expce 16005  Ο€cpi 16010  TopOpenctopn 17367  βˆžMetcxmet 20929  ballcbl 20931  β„‚fldccnfld 20944  Topctop 22395  TopOnctopon 22412   Cn ccn 22728  β€“cnβ†’ccncf 24392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-tan 16015  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-cmp 22891  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-limc 25383  df-dv 25384  df-log 26065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator