![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirith | Structured version Visualization version GIF version |
Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to π. Theorem 9.4.1 of [Shapiro], p. 375. See https://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
dirith | β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β {π β β β£ π β₯ (π β π΄)} β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . . . . . . 8 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β π β β) | |
2 | 1 | nnnn0d 12528 | . . . . . . 7 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β π β β0) |
3 | 2 | adantr 481 | . . . . . 6 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β π β β0) |
4 | eqid 2732 | . . . . . . 7 β’ (β€/nβ€βπ) = (β€/nβ€βπ) | |
5 | eqid 2732 | . . . . . . 7 β’ (Baseβ(β€/nβ€βπ)) = (Baseβ(β€/nβ€βπ)) | |
6 | eqid 2732 | . . . . . . 7 β’ (β€RHomβ(β€/nβ€βπ)) = (β€RHomβ(β€/nβ€βπ)) | |
7 | 4, 5, 6 | znzrhfo 21094 | . . . . . 6 β’ (π β β0 β (β€RHomβ(β€/nβ€βπ)):β€βontoβ(Baseβ(β€/nβ€βπ))) |
8 | fofn 6804 | . . . . . 6 β’ ((β€RHomβ(β€/nβ€βπ)):β€βontoβ(Baseβ(β€/nβ€βπ)) β (β€RHomβ(β€/nβ€βπ)) Fn β€) | |
9 | 3, 7, 8 | 3syl 18 | . . . . 5 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β (β€RHomβ(β€/nβ€βπ)) Fn β€) |
10 | prmz 16608 | . . . . . 6 β’ (π β β β π β β€) | |
11 | 10 | adantl 482 | . . . . 5 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β π β β€) |
12 | fniniseg 7058 | . . . . . 6 β’ ((β€RHomβ(β€/nβ€βπ)) Fn β€ β (π β (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) β (π β β€ β§ ((β€RHomβ(β€/nβ€βπ))βπ) = ((β€RHomβ(β€/nβ€βπ))βπ΄)))) | |
13 | 12 | baibd 540 | . . . . 5 β’ (((β€RHomβ(β€/nβ€βπ)) Fn β€ β§ π β β€) β (π β (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) β ((β€RHomβ(β€/nβ€βπ))βπ) = ((β€RHomβ(β€/nβ€βπ))βπ΄))) |
14 | 9, 11, 13 | syl2anc 584 | . . . 4 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β (π β (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) β ((β€RHomβ(β€/nβ€βπ))βπ) = ((β€RHomβ(β€/nβ€βπ))βπ΄))) |
15 | simp2 1137 | . . . . . 6 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β π΄ β β€) | |
16 | 15 | adantr 481 | . . . . 5 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β π΄ β β€) |
17 | 4, 6 | zndvds 21096 | . . . . 5 β’ ((π β β0 β§ π β β€ β§ π΄ β β€) β (((β€RHomβ(β€/nβ€βπ))βπ) = ((β€RHomβ(β€/nβ€βπ))βπ΄) β π β₯ (π β π΄))) |
18 | 3, 11, 16, 17 | syl3anc 1371 | . . . 4 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β (((β€RHomβ(β€/nβ€βπ))βπ) = ((β€RHomβ(β€/nβ€βπ))βπ΄) β π β₯ (π β π΄))) |
19 | 14, 18 | bitrd 278 | . . 3 β’ (((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β§ π β β) β (π β (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) β π β₯ (π β π΄))) |
20 | 19 | rabbi2dva 4216 | . 2 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β (β β© (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)})) = {π β β β£ π β₯ (π β π΄)}) |
21 | eqid 2732 | . . 3 β’ (Unitβ(β€/nβ€βπ)) = (Unitβ(β€/nβ€βπ)) | |
22 | simp3 1138 | . . . 4 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β (π΄ gcd π) = 1) | |
23 | 4, 21, 6 | znunit 21110 | . . . . 5 β’ ((π β β0 β§ π΄ β β€) β (((β€RHomβ(β€/nβ€βπ))βπ΄) β (Unitβ(β€/nβ€βπ)) β (π΄ gcd π) = 1)) |
24 | 2, 15, 23 | syl2anc 584 | . . . 4 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β (((β€RHomβ(β€/nβ€βπ))βπ΄) β (Unitβ(β€/nβ€βπ)) β (π΄ gcd π) = 1)) |
25 | 22, 24 | mpbird 256 | . . 3 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β ((β€RHomβ(β€/nβ€βπ))βπ΄) β (Unitβ(β€/nβ€βπ))) |
26 | eqid 2732 | . . 3 β’ (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) = (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)}) | |
27 | 4, 6, 1, 21, 25, 26 | dirith2 27020 | . 2 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β (β β© (β‘(β€RHomβ(β€/nβ€βπ)) β {((β€RHomβ(β€/nβ€βπ))βπ΄)})) β β) |
28 | 20, 27 | eqbrtrrd 5171 | 1 β’ ((π β β β§ π΄ β β€ β§ (π΄ gcd π) = 1) β {π β β β£ π β₯ (π β π΄)} β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 β© cin 3946 {csn 4627 class class class wbr 5147 β‘ccnv 5674 β cima 5678 Fn wfn 6535 βontoβwfo 6538 βcfv 6540 (class class class)co 7405 β cen 8932 1c1 11107 β cmin 11440 βcn 12208 β0cn0 12468 β€cz 12554 β₯ cdvds 16193 gcd cgcd 16431 βcprime 16604 Basecbs 17140 Unitcui 20161 β€RHomczrh 21040 β€/nβ€czn 21043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-rpss 7709 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-o1 15430 df-lo1 15431 df-sum 15629 df-ef 16007 df-e 16008 df-sin 16009 df-cos 16010 df-tan 16011 df-pi 16012 df-dvds 16194 df-gcd 16432 df-prm 16605 df-numer 16667 df-denom 16668 df-phi 16695 df-pc 16766 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-qus 17451 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-gim 19127 df-ga 19148 df-cntz 19175 df-oppg 19204 df-od 19390 df-gex 19391 df-pgp 19392 df-lsm 19498 df-pj1 19499 df-cmn 19644 df-abl 19645 df-cyg 19740 df-dprd 19859 df-dpj 19860 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-rnghom 20243 df-drng 20309 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-sra 20777 df-rgmod 20778 df-lidl 20779 df-rsp 20780 df-2idl 20849 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-zring 21010 df-zrh 21044 df-zn 21047 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-0p 25178 df-limc 25374 df-dv 25375 df-ply 25693 df-idp 25694 df-coe 25695 df-dgr 25696 df-quot 25795 df-ulm 25880 df-log 26056 df-cxp 26057 df-atan 26361 df-em 26486 df-cht 26590 df-vma 26591 df-chp 26592 df-ppi 26593 df-mu 26594 df-dchr 26725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |