Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirith Structured version   Visualization version   GIF version

Theorem dirith 26113
 Description: Dirichlet's theorem: there are infinitely many primes in any arithmetic progression coprime to 𝑁. Theorem 9.4.1 of [Shapiro], p. 375. See http://metamath-blog.blogspot.com/2016/05/dirichlets-theorem.html for an informal exposition. This is Metamath 100 proof #48. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
dirith ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑝 ∈ ℙ ∣ 𝑁 ∥ (𝑝𝐴)} ≈ ℕ)
Distinct variable groups:   𝐴,𝑝   𝑁,𝑝

Proof of Theorem dirith
StepHypRef Expression
1 simp1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
21nnnn0d 11943 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℕ0)
32adantr 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ0)
4 eqid 2798 . . . . . . 7 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
5 eqid 2798 . . . . . . 7 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
6 eqid 2798 . . . . . . 7 (ℤRHom‘(ℤ/nℤ‘𝑁)) = (ℤRHom‘(ℤ/nℤ‘𝑁))
74, 5, 6znzrhfo 20239 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤ/nℤ‘𝑁)):ℤ–onto→(Base‘(ℤ/nℤ‘𝑁)))
8 fofn 6567 . . . . . 6 ((ℤRHom‘(ℤ/nℤ‘𝑁)):ℤ–onto→(Base‘(ℤ/nℤ‘𝑁)) → (ℤRHom‘(ℤ/nℤ‘𝑁)) Fn ℤ)
93, 7, 83syl 18 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → (ℤRHom‘(ℤ/nℤ‘𝑁)) Fn ℤ)
10 prmz 16009 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1110adantl 485 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
12 fniniseg 6807 . . . . . 6 ((ℤRHom‘(ℤ/nℤ‘𝑁)) Fn ℤ → (𝑝 ∈ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)}) ↔ (𝑝 ∈ ℤ ∧ ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑝) = ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))
1312baibd 543 . . . . 5 (((ℤRHom‘(ℤ/nℤ‘𝑁)) Fn ℤ ∧ 𝑝 ∈ ℤ) → (𝑝 ∈ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)}) ↔ ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑝) = ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))
149, 11, 13syl2anc 587 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)}) ↔ ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑝) = ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))
15 simp2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝐴 ∈ ℤ)
1615adantr 484 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
174, 6zndvds 20241 . . . . 5 ((𝑁 ∈ ℕ0𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑝) = ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴) ↔ 𝑁 ∥ (𝑝𝐴)))
183, 11, 16, 17syl3anc 1368 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → (((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝑝) = ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴) ↔ 𝑁 ∥ (𝑝𝐴)))
1914, 18bitrd 282 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑝 ∈ ℙ) → (𝑝 ∈ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)}) ↔ 𝑁 ∥ (𝑝𝐴)))
2019rabbi2dva 4144 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ℙ ∩ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)})) = {𝑝 ∈ ℙ ∣ 𝑁 ∥ (𝑝𝐴)})
21 eqid 2798 . . 3 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
22 simp3 1135 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (𝐴 gcd 𝑁) = 1)
234, 21, 6znunit 20255 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴) ∈ (Unit‘(ℤ/nℤ‘𝑁)) ↔ (𝐴 gcd 𝑁) = 1))
242, 15, 23syl2anc 587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴) ∈ (Unit‘(ℤ/nℤ‘𝑁)) ↔ (𝐴 gcd 𝑁) = 1))
2522, 24mpbird 260 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴) ∈ (Unit‘(ℤ/nℤ‘𝑁)))
26 eqid 2798 . . 3 ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)}) = ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)})
274, 6, 1, 21, 25, 26dirith2 26112 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (ℙ ∩ ((ℤRHom‘(ℤ/nℤ‘𝑁)) “ {((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)})) ≈ ℕ)
2820, 27eqbrtrrd 5054 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → {𝑝 ∈ ℙ ∣ 𝑁 ∥ (𝑝𝐴)} ≈ ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3110   ∩ cin 3880  {csn 4525   class class class wbr 5030  ◡ccnv 5518   “ cima 5522   Fn wfn 6319  –onto→wfo 6322  ‘cfv 6324  (class class class)co 7135   ≈ cen 8489  1c1 10527   − cmin 10859  ℕcn 11625  ℕ0cn0 11885  ℤcz 11969   ∥ cdvds 15599   gcd cgcd 15833  ℙcprime 16005  Basecbs 16475  Unitcui 19385  ℤRHomczrh 20193  ℤ/nℤczn 20196 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-numer 16065  df-denom 16066  df-phi 16093  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-qus 16774  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-gim 18391  df-ga 18412  df-cntz 18439  df-oppg 18466  df-od 18648  df-gex 18649  df-pgp 18650  df-lsm 18753  df-pj1 18754  df-cmn 18900  df-abl 18901  df-cyg 18990  df-dprd 19110  df-dpj 19111  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-0p 24274  df-limc 24469  df-dv 24470  df-ply 24785  df-idp 24786  df-coe 24787  df-dgr 24788  df-quot 24887  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578  df-cht 25682  df-vma 25683  df-chp 25684  df-ppi 25685  df-mu 25686  df-dchr 25817 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator