![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diarnN | Structured version Visualization version GIF version |
Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | β’ π» = (LHypβπΎ) |
dvadia.u | β’ π = ((DVecAβπΎ)βπ) |
dvadia.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
dvadia.n | β’ β₯ = ((ocAβπΎ)βπ) |
dvadia.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
diarnN | β’ ((πΎ β HL β§ π β π») β ran πΌ = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | dvadia.u | . . . 4 β’ π = ((DVecAβπΎ)βπ) | |
3 | dvadia.i | . . . 4 β’ πΌ = ((DIsoAβπΎ)βπ) | |
4 | dvadia.s | . . . 4 β’ π = (LSubSpβπ) | |
5 | 1, 2, 3, 4 | diasslssN 40394 | . . 3 β’ ((πΎ β HL β§ π β π») β ran πΌ β π) |
6 | sseqin2 4215 | . . 3 β’ (ran πΌ β π β (π β© ran πΌ) = ran πΌ) | |
7 | 5, 6 | sylib 217 | . 2 β’ ((πΎ β HL β§ π β π») β (π β© ran πΌ) = ran πΌ) |
8 | dvadia.n | . . . . . . 7 β’ β₯ = ((ocAβπΎ)βπ) | |
9 | 1, 3, 8 | doca3N 40462 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π₯ β ran πΌ) β ( β₯ β( β₯ βπ₯)) = π₯) |
10 | 9 | ex 412 | . . . . 5 β’ ((πΎ β HL β§ π β π») β (π₯ β ran πΌ β ( β₯ β( β₯ βπ₯)) = π₯)) |
11 | 10 | adantr 480 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π₯ β π) β (π₯ β ran πΌ β ( β₯ β( β₯ βπ₯)) = π₯)) |
12 | 1, 2, 3, 8, 4 | dvadiaN 40463 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (π₯ β π β§ ( β₯ β( β₯ βπ₯)) = π₯)) β π₯ β ran πΌ) |
13 | 12 | expr 456 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π₯ β π) β (( β₯ β( β₯ βπ₯)) = π₯ β π₯ β ran πΌ)) |
14 | 11, 13 | impbid 211 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π₯ β π) β (π₯ β ran πΌ β ( β₯ β( β₯ βπ₯)) = π₯)) |
15 | 14 | rabbi2dva 4217 | . 2 β’ ((πΎ β HL β§ π β π») β (π β© ran πΌ) = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
16 | 7, 15 | eqtr3d 2773 | 1 β’ ((πΎ β HL β§ π β π») β ran πΌ = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 β© cin 3947 β wss 3948 ran crn 5677 βcfv 6543 LSubSpclss 20774 HLchlt 38684 LHypclh 39319 DVecAcdveca 40337 DIsoAcdia 40363 ocAcocaN 40454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38287 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-lss 20775 df-oposet 38510 df-cmtN 38511 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-llines 38833 df-lplanes 38834 df-lvols 38835 df-lines 38836 df-psubsp 38838 df-pmap 38839 df-padd 39131 df-lhyp 39323 df-laut 39324 df-ldil 39439 df-ltrn 39440 df-trl 39494 df-tendo 40090 df-edring 40092 df-dveca 40338 df-disoa 40364 df-docaN 40455 |
This theorem is referenced by: diaf1oN 40465 |
Copyright terms: Public domain | W3C validator |