| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diarnN | Structured version Visualization version GIF version | ||
| Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
| dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| Ref | Expression |
|---|---|
| diarnN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadia.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvadia.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 3 | dvadia.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | dvadia.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 5 | 1, 2, 3, 4 | diasslssN 41053 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
| 6 | sseqin2 4186 | . . 3 ⊢ (ran 𝐼 ⊆ 𝑆 ↔ (𝑆 ∩ ran 𝐼) = ran 𝐼) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = ran 𝐼) |
| 8 | dvadia.n | . . . . . . 7 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
| 9 | 1, 3, 8 | doca3N 41121 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
| 10 | 9 | ex 412 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
| 11 | 10 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
| 12 | 1, 2, 3, 8, 4 | dvadiaN 41122 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) → 𝑥 ∈ ran 𝐼) |
| 13 | 12 | expr 456 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 → 𝑥 ∈ ran 𝐼)) |
| 14 | 11, 13 | impbid 212 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 ↔ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
| 15 | 14 | rabbi2dva 4189 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| 16 | 7, 15 | eqtr3d 2766 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ∩ cin 3913 ⊆ wss 3914 ran crn 5639 ‘cfv 6511 LSubSpclss 20837 HLchlt 39343 LHypclh 39978 DVecAcdveca 40996 DIsoAcdia 41022 ocAcocaN 41113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-lss 20838 df-oposet 39169 df-cmtN 39170 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-docaN 41114 |
| This theorem is referenced by: diaf1oN 41124 |
| Copyright terms: Public domain | W3C validator |