![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diarnN | Structured version Visualization version GIF version |
Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diarnN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvadia.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
3 | dvadia.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
4 | dvadia.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | 1, 2, 3, 4 | diasslssN 37135 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
6 | sseqin2 4045 | . . 3 ⊢ (ran 𝐼 ⊆ 𝑆 ↔ (𝑆 ∩ ran 𝐼) = ran 𝐼) | |
7 | 5, 6 | sylib 210 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = ran 𝐼) |
8 | dvadia.n | . . . . . . 7 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
9 | 1, 3, 8 | doca3N 37203 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
10 | 9 | ex 403 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
11 | 10 | adantr 474 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
12 | 1, 2, 3, 8, 4 | dvadiaN 37204 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) → 𝑥 ∈ ran 𝐼) |
13 | 12 | expr 450 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 → 𝑥 ∈ ran 𝐼)) |
14 | 11, 13 | impbid 204 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 ↔ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
15 | 14 | rabbi2dva 4047 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
16 | 7, 15 | eqtr3d 2864 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3122 ∩ cin 3798 ⊆ wss 3799 ran crn 5344 ‘cfv 6124 LSubSpclss 19289 HLchlt 35426 LHypclh 36060 DVecAcdveca 37078 DIsoAcdia 37104 ocAcocaN 37195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-riotaBAD 35029 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-undef 7665 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-p1 17394 df-lat 17400 df-clat 17462 df-lss 19290 df-oposet 35252 df-cmtN 35253 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 df-lines 35577 df-psubsp 35579 df-pmap 35580 df-padd 35872 df-lhyp 36064 df-laut 36065 df-ldil 36180 df-ltrn 36181 df-trl 36235 df-tendo 36831 df-edring 36833 df-dveca 37079 df-disoa 37105 df-docaN 37196 |
This theorem is referenced by: diaf1oN 37206 |
Copyright terms: Public domain | W3C validator |