Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diarnN Structured version   Visualization version   GIF version

Theorem diarnN 38829
Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvadia.h 𝐻 = (LHyp‘𝐾)
dvadia.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvadia.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dvadia.n = ((ocA‘𝐾)‘𝑊)
dvadia.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diarnN ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝑈(𝑥)   (𝑥)

Proof of Theorem diarnN
StepHypRef Expression
1 dvadia.h . . . 4 𝐻 = (LHyp‘𝐾)
2 dvadia.u . . . 4 𝑈 = ((DVecA‘𝐾)‘𝑊)
3 dvadia.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 dvadia.s . . . 4 𝑆 = (LSubSp‘𝑈)
51, 2, 3, 4diasslssN 38759 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼𝑆)
6 sseqin2 4116 . . 3 (ran 𝐼𝑆 ↔ (𝑆 ∩ ran 𝐼) = ran 𝐼)
75, 6sylib 221 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ∩ ran 𝐼) = ran 𝐼)
8 dvadia.n . . . . . . 7 = ((ocA‘𝐾)‘𝑊)
91, 3, 8doca3N 38827 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ran 𝐼) → ( ‘( 𝑥)) = 𝑥)
109ex 416 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ ran 𝐼 → ( ‘( 𝑥)) = 𝑥))
1110adantr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (𝑥 ∈ ran 𝐼 → ( ‘( 𝑥)) = 𝑥))
121, 2, 3, 8, 4dvadiaN 38828 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑆 ∧ ( ‘( 𝑥)) = 𝑥)) → 𝑥 ∈ ran 𝐼)
1312expr 460 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (( ‘( 𝑥)) = 𝑥𝑥 ∈ ran 𝐼))
1411, 13impbid 215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑆) → (𝑥 ∈ ran 𝐼 ↔ ( ‘( 𝑥)) = 𝑥))
1514rabbi2dva 4118 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑆 ∩ ran 𝐼) = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
167, 15eqtr3d 2773 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {crab 3055  cin 3852  wss 3853  ran crn 5537  cfv 6358  LSubSpclss 19922  HLchlt 37050  LHypclh 37684  DVecAcdveca 38702  DIsoAcdia 38728  ocAcocaN 38819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-riotaBAD 36653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-undef 7993  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-p1 17886  df-lat 17892  df-clat 17959  df-lss 19923  df-oposet 36876  df-cmtN 36877  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-llines 37198  df-lplanes 37199  df-lvols 37200  df-lines 37201  df-psubsp 37203  df-pmap 37204  df-padd 37496  df-lhyp 37688  df-laut 37689  df-ldil 37804  df-ltrn 37805  df-trl 37859  df-tendo 38455  df-edring 38457  df-dveca 38703  df-disoa 38729  df-docaN 38820
This theorem is referenced by:  diaf1oN  38830
  Copyright terms: Public domain W3C validator