![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diarnN | Structured version Visualization version GIF version |
Description: Partial isomorphism A maps onto the set of all closed subspaces of partial vector space A. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diarnN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvadia.u | . . . 4 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
3 | dvadia.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
4 | dvadia.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑈) | |
5 | 1, 2, 3, 4 | diasslssN 39735 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 ⊆ 𝑆) |
6 | sseqin2 4211 | . . 3 ⊢ (ran 𝐼 ⊆ 𝑆 ↔ (𝑆 ∩ ran 𝐼) = ran 𝐼) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = ran 𝐼) |
8 | dvadia.n | . . . . . . 7 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
9 | 1, 3, 8 | doca3N 39803 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
10 | 9 | ex 413 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
11 | 10 | adantr 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
12 | 1, 2, 3, 8, 4 | dvadiaN 39804 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) → 𝑥 ∈ ran 𝐼) |
13 | 12 | expr 457 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥 → 𝑥 ∈ ran 𝐼)) |
14 | 11, 13 | impbid 211 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ran 𝐼 ↔ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
15 | 14 | rabbi2dva 4213 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑆 ∩ ran 𝐼) = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
16 | 7, 15 | eqtr3d 2773 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3431 ∩ cin 3943 ⊆ wss 3944 ran crn 5670 ‘cfv 6532 LSubSpclss 20491 HLchlt 38025 LHypclh 38660 DVecAcdveca 39678 DIsoAcdia 39704 ocAcocaN 39795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-riotaBAD 37628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-undef 8240 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-proset 18230 df-poset 18248 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-lss 20492 df-oposet 37851 df-cmtN 37852 df-ol 37853 df-oml 37854 df-covers 37941 df-ats 37942 df-atl 37973 df-cvlat 37997 df-hlat 38026 df-llines 38174 df-lplanes 38175 df-lvols 38176 df-lines 38177 df-psubsp 38179 df-pmap 38180 df-padd 38472 df-lhyp 38664 df-laut 38665 df-ldil 38780 df-ltrn 38781 df-trl 38835 df-tendo 39431 df-edring 39433 df-dveca 39679 df-disoa 39705 df-docaN 39796 |
This theorem is referenced by: diaf1oN 39806 |
Copyright terms: Public domain | W3C validator |