MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgphaus Structured version   Visualization version   GIF version

Theorem qustgphaus 22728
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgphaus.j 𝐽 = (TopOpen‘𝐺)
qustgphaus.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
qustgphaus ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)

Proof of Theorem qustgphaus
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qustgp.h . . . . . . . 8 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
2 eqid 2798 . . . . . . . 8 (0g𝐺) = (0g𝐺)
31, 2qus0 18330 . . . . . . 7 (𝑌 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
433ad2ant2 1131 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
5 tgpgrp 22683 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
653ad2ant1 1130 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
7 eqid 2798 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
87, 2grpidcl 18123 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
96, 8syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
10 ovex 7168 . . . . . . . 8 (𝐺 ~QG 𝑌) ∈ V
1110ecelqsi 8336 . . . . . . 7 ((0g𝐺) ∈ (Base‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
129, 11syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
134, 12eqeltrrd 2891 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
1413snssd 4702 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
15 eqid 2798 . . . . . . 7 (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))
1615mptpreima 6059 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}}
17 nsgsubg 18302 . . . . . . . . . . 11 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
18173ad2ant2 1131 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺))
19 eqid 2798 . . . . . . . . . . 11 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
207, 19, 2eqgid 18324 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
2118, 20syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
227subgss 18272 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2318, 22syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺))
2421, 23eqsstrd 3953 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺))
25 sseqin2 4142 . . . . . . . 8 ([(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
2624, 25sylib 221 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
277, 19eqger 18322 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2818, 27syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2928, 9erth 8321 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
3029adantr 484 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
314adantr 484 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
3231eqeq1d 2800 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
3330, 32bitrd 282 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
34 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
35 fvex 6658 . . . . . . . . . 10 (0g𝐺) ∈ V
3634, 35elec 8316 . . . . . . . . 9 (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ (0g𝐺)(𝐺 ~QG 𝑌)𝑥)
37 fvex 6658 . . . . . . . . . . 11 (0g𝐻) ∈ V
3837elsn2 4564 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g𝐻))
39 eqcom 2805 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) = (0g𝐻) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4038, 39bitri 278 . . . . . . . . 9 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4133, 36, 403bitr4g 317 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}))
4241rabbi2dva 4144 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}})
4326, 42, 213eqtr3d 2841 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}} = 𝑌)
4416, 43syl5eq 2845 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = 𝑌)
45 simp3 1135 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽))
4644, 45eqeltrd 2890 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))
47 qustgphaus.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
4847, 7tgptopon 22687 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
49483ad2ant1 1130 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
501a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
51 eqidd 2799 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺))
5210a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V)
53 simp1 1133 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
5450, 51, 15, 52, 53quslem 16808 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌)))
55 qtopcld 22318 . . . . 5 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5649, 54, 55syl2anc 587 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5714, 46, 56mpbir2and 712 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
5850, 51, 15, 52, 53qusval 16807 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺))
59 qustgphaus.k . . . . 5 𝐾 = (TopOpen‘𝐻)
6058, 51, 54, 53, 47, 59imastopn 22325 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))
6160fveq2d 6649 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
6257, 61eleqtrrd 2893 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘𝐾))
631qustgp 22727 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp)
64633adant3 1129 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp)
65 eqid 2798 . . . 4 (0g𝐻) = (0g𝐻)
6665, 59tgphaus 22722 . . 3 (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6764, 66syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6862, 67mpbird 260 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cin 3880  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522  ontowfo 6322  cfv 6324  (class class class)co 7135   Er wer 8269  [cec 8270   / cqs 8271  Basecbs 16475  TopOpenctopn 16687  0gc0g 16705   qTop cqtop 16768   /s cqus 16770  Grpcgrp 18095  SubGrpcsubg 18265  NrmSGrpcnsg 18266   ~QG cqg 18267  TopOnctopon 21515  Clsdccld 21621  Hauscha 21913  TopGrpctgp 22676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-topgen 16709  df-qtop 16772  df-imas 16773  df-qus 16774  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-nsg 18269  df-eqg 18270  df-oppg 18466  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-tmd 22677  df-tgp 22678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator