MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgphaus Structured version   Visualization version   GIF version

Theorem qustgphaus 23274
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgphaus.j 𝐽 = (TopOpen‘𝐺)
qustgphaus.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
qustgphaus ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)

Proof of Theorem qustgphaus
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qustgp.h . . . . . . . 8 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
2 eqid 2738 . . . . . . . 8 (0g𝐺) = (0g𝐺)
31, 2qus0 18814 . . . . . . 7 (𝑌 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
433ad2ant2 1133 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
5 tgpgrp 23229 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
653ad2ant1 1132 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
7 eqid 2738 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
87, 2grpidcl 18607 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
96, 8syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
10 ovex 7308 . . . . . . . 8 (𝐺 ~QG 𝑌) ∈ V
1110ecelqsi 8562 . . . . . . 7 ((0g𝐺) ∈ (Base‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
129, 11syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
134, 12eqeltrrd 2840 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
1413snssd 4742 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
15 eqid 2738 . . . . . . 7 (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))
1615mptpreima 6141 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}}
17 nsgsubg 18786 . . . . . . . . . . 11 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
18173ad2ant2 1133 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺))
19 eqid 2738 . . . . . . . . . . 11 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
207, 19, 2eqgid 18808 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
2118, 20syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
227subgss 18756 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2318, 22syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺))
2421, 23eqsstrd 3959 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺))
25 sseqin2 4149 . . . . . . . 8 ([(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
2624, 25sylib 217 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
277, 19eqger 18806 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2818, 27syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2928, 9erth 8547 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
3029adantr 481 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
314adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
3231eqeq1d 2740 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
3330, 32bitrd 278 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
34 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
35 fvex 6787 . . . . . . . . . 10 (0g𝐺) ∈ V
3634, 35elec 8542 . . . . . . . . 9 (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ (0g𝐺)(𝐺 ~QG 𝑌)𝑥)
37 fvex 6787 . . . . . . . . . . 11 (0g𝐻) ∈ V
3837elsn2 4600 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g𝐻))
39 eqcom 2745 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) = (0g𝐻) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4038, 39bitri 274 . . . . . . . . 9 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4133, 36, 403bitr4g 314 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}))
4241rabbi2dva 4151 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}})
4326, 42, 213eqtr3d 2786 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}} = 𝑌)
4416, 43eqtrid 2790 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = 𝑌)
45 simp3 1137 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽))
4644, 45eqeltrd 2839 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))
47 qustgphaus.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
4847, 7tgptopon 23233 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
49483ad2ant1 1132 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
501a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
51 eqidd 2739 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺))
5210a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V)
53 simp1 1135 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
5450, 51, 15, 52, 53quslem 17254 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌)))
55 qtopcld 22864 . . . . 5 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5649, 54, 55syl2anc 584 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5714, 46, 56mpbir2and 710 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
5850, 51, 15, 52, 53qusval 17253 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺))
59 qustgphaus.k . . . . 5 𝐾 = (TopOpen‘𝐻)
6058, 51, 54, 53, 47, 59imastopn 22871 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))
6160fveq2d 6778 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
6257, 61eleqtrrd 2842 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘𝐾))
631qustgp 23273 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp)
64633adant3 1131 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp)
65 eqid 2738 . . . 4 (0g𝐻) = (0g𝐻)
6665, 59tgphaus 23268 . . 3 (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6764, 66syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6862, 67mpbird 256 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592  ontowfo 6431  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496   / cqs 8497  Basecbs 16912  TopOpenctopn 17132  0gc0g 17150   qTop cqtop 17214   /s cqus 17216  Grpcgrp 18577  SubGrpcsubg 18749  NrmSGrpcnsg 18750   ~QG cqg 18751  TopOnctopon 22059  Clsdccld 22167  Hauscha 22459  TopGrpctgp 23222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-qtop 17218  df-imas 17219  df-qus 17220  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-nsg 18753  df-eqg 18754  df-oppg 18950  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-tx 22713  df-hmeo 22906  df-tmd 23223  df-tgp 23224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator