| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | qustgp.h | . . . . . . . 8
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) | 
| 2 |  | eqid 2736 | . . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 3 | 1, 2 | qus0 19208 | . . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) | 
| 4 | 3 | 3ad2ant2 1134 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) | 
| 5 |  | tgpgrp 24087 | . . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) | 
| 6 | 5 | 3ad2ant1 1133 | . . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) | 
| 7 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 8 | 7, 2 | grpidcl 18984 | . . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) | 
| 9 | 6, 8 | syl 17 | . . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ (Base‘𝐺)) | 
| 10 |  | ovex 7465 | . . . . . . . 8
⊢ (𝐺 ~QG 𝑌) ∈ V | 
| 11 | 10 | ecelqsi 8814 | . . . . . . 7
⊢
((0g‘𝐺) ∈ (Base‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) | 
| 12 | 9, 11 | syl 17 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) | 
| 13 | 4, 12 | eqeltrrd 2841 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) | 
| 14 | 13 | snssd 4808 | . . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) | 
| 15 |  | eqid 2736 | . . . . . . 7
⊢ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) | 
| 16 | 15 | mptpreima 6257 | . . . . . 6
⊢ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} | 
| 17 |  | nsgsubg 19177 | . . . . . . . . . . 11
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) | 
| 18 | 17 | 3ad2ant2 1134 | . . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺)) | 
| 19 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) | 
| 20 | 7, 19, 2 | eqgid 19199 | . . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) | 
| 21 | 18, 20 | syl 17 | . . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) | 
| 22 | 7 | subgss 19146 | . . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺)) | 
| 23 | 18, 22 | syl 17 | . . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺)) | 
| 24 | 21, 23 | eqsstrd 4017 | . . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺)) | 
| 25 |  | sseqin2 4222 | . . . . . . . 8
⊢
([(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) | 
| 26 | 24, 25 | sylib 218 | . . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) | 
| 27 | 7, 19 | eqger 19197 | . . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) | 
| 28 | 18, 27 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) | 
| 29 | 28, 9 | erth 8797 | . . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) | 
| 30 | 29 | adantr 480 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) | 
| 31 | 4 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) | 
| 32 | 31 | eqeq1d 2738 | . . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) | 
| 33 | 30, 32 | bitrd 279 | . . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) | 
| 34 |  | vex 3483 | . . . . . . . . . 10
⊢ 𝑥 ∈ V | 
| 35 |  | fvex 6918 | . . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V | 
| 36 | 34, 35 | elec 8792 | . . . . . . . . 9
⊢ (𝑥 ∈
[(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ (0g‘𝐺)(𝐺 ~QG 𝑌)𝑥) | 
| 37 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(0g‘𝐻) ∈ V | 
| 38 | 37 | elsn2 4664 | . . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻)) | 
| 39 |  | eqcom 2743 | . . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌)) | 
| 40 | 38, 39 | bitri 275 | . . . . . . . . 9
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔
(0g‘𝐻) =
[𝑥](𝐺 ~QG 𝑌)) | 
| 41 | 33, 36, 40 | 3bitr4g 314 | . . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)})) | 
| 42 | 41 | rabbi2dva 4225 | . . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}}) | 
| 43 | 26, 42, 21 | 3eqtr3d 2784 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} = 𝑌) | 
| 44 | 16, 43 | eqtrid 2788 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = 𝑌) | 
| 45 |  | simp3 1138 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽)) | 
| 46 | 44, 45 | eqeltrd 2840 | . . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)) | 
| 47 |  | qustgphaus.j | . . . . . . 7
⊢ 𝐽 = (TopOpen‘𝐺) | 
| 48 | 47, 7 | tgptopon 24091 | . . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) | 
| 49 | 48 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) | 
| 50 | 1 | a1i 11 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))) | 
| 51 |  | eqidd 2737 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺)) | 
| 52 | 10 | a1i 11 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V) | 
| 53 |  | simp1 1136 | . . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) | 
| 54 | 50, 51, 15, 52, 53 | quslem 17589 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) | 
| 55 |  | qtopcld 23722 | . . . . 5
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) | 
| 56 | 49, 54, 55 | syl2anc 584 | . . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) | 
| 57 | 14, 46, 56 | mpbir2and 713 | . . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) | 
| 58 | 50, 51, 15, 52, 53 | qusval 17588 | . . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺)) | 
| 59 |  | qustgphaus.k | . . . . 5
⊢ 𝐾 = (TopOpen‘𝐻) | 
| 60 | 58, 51, 54, 53, 47, 59 | imastopn 23729 | . . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) | 
| 61 | 60 | fveq2d 6909 | . . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) | 
| 62 | 57, 61 | eleqtrrd 2843 | . 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘𝐾)) | 
| 63 | 1 | qustgp 24131 | . . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) | 
| 64 | 63 | 3adant3 1132 | . . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp) | 
| 65 |  | eqid 2736 | . . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) | 
| 66 | 65, 59 | tgphaus 24126 | . . 3
⊢ (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) | 
| 67 | 64, 66 | syl 17 | . 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) | 
| 68 | 62, 67 | mpbird 257 | 1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) |