MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgphaus Structured version   Visualization version   GIF version

Theorem qustgphaus 24017
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgphaus.j 𝐽 = (TopOpen‘𝐺)
qustgphaus.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
qustgphaus ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)

Proof of Theorem qustgphaus
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qustgp.h . . . . . . . 8 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
2 eqid 2730 . . . . . . . 8 (0g𝐺) = (0g𝐺)
31, 2qus0 19128 . . . . . . 7 (𝑌 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
433ad2ant2 1134 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
5 tgpgrp 23972 . . . . . . . . 9 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
653ad2ant1 1133 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp)
7 eqid 2730 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
87, 2grpidcl 18904 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
96, 8syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
10 ovex 7423 . . . . . . . 8 (𝐺 ~QG 𝑌) ∈ V
1110ecelqsi 8746 . . . . . . 7 ((0g𝐺) ∈ (Base‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
129, 11syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
134, 12eqeltrrd 2830 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
1413snssd 4776 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)))
15 eqid 2730 . . . . . . 7 (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))
1615mptpreima 6214 . . . . . 6 ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}}
17 nsgsubg 19097 . . . . . . . . . . 11 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
18173ad2ant2 1134 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺))
19 eqid 2730 . . . . . . . . . . 11 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
207, 19, 2eqgid 19119 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
2118, 20syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) = 𝑌)
227subgss 19066 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺))
2318, 22syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺))
2421, 23eqsstrd 3984 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺))
25 sseqin2 4189 . . . . . . . 8 ([(0g𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
2624, 25sylib 218 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = [(0g𝐺)](𝐺 ~QG 𝑌))
277, 19eqger 19117 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2818, 27syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺))
2928, 9erth 8728 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
3029adantr 480 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌)))
314adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g𝐺)](𝐺 ~QG 𝑌) = (0g𝐻))
3231eqeq1d 2732 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
3330, 32bitrd 279 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌)))
34 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
35 fvex 6874 . . . . . . . . . 10 (0g𝐺) ∈ V
3634, 35elec 8720 . . . . . . . . 9 (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ (0g𝐺)(𝐺 ~QG 𝑌)𝑥)
37 fvex 6874 . . . . . . . . . . 11 (0g𝐻) ∈ V
3837elsn2 4632 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g𝐻))
39 eqcom 2737 . . . . . . . . . 10 ([𝑥](𝐺 ~QG 𝑌) = (0g𝐻) ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4038, 39bitri 275 . . . . . . . . 9 ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)} ↔ (0g𝐻) = [𝑥](𝐺 ~QG 𝑌))
4133, 36, 403bitr4g 314 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}))
4241rabbi2dva 4192 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}})
4326, 42, 213eqtr3d 2773 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g𝐻)}} = 𝑌)
4416, 43eqtrid 2777 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) = 𝑌)
45 simp3 1138 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽))
4644, 45eqeltrd 2829 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))
47 qustgphaus.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
4847, 7tgptopon 23976 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
49483ad2ant1 1133 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
501a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
51 eqidd 2731 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺))
5210a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V)
53 simp1 1136 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp)
5450, 51, 15, 52, 53quslem 17513 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌)))
55 qtopcld 23607 . . . . 5 ((𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5649, 54, 55syl2anc 584 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g𝐻)}) ∈ (Clsd‘𝐽))))
5714, 46, 56mpbir2and 713 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
5850, 51, 15, 52, 53qusval 17512 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺))
59 qustgphaus.k . . . . 5 𝐾 = (TopOpen‘𝐻)
6058, 51, 54, 53, 47, 59imastopn 23614 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))
6160fveq2d 6865 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))))
6257, 61eleqtrrd 2832 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g𝐻)} ∈ (Clsd‘𝐾))
631qustgp 24016 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp)
64633adant3 1132 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp)
65 eqid 2730 . . . 4 (0g𝐻) = (0g𝐻)
6665, 59tgphaus 24011 . . 3 (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6764, 66syl 17 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔ {(0g𝐻)} ∈ (Clsd‘𝐾)))
6862, 67mpbird 257 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cin 3916  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  ontowfo 6512  cfv 6514  (class class class)co 7390   Er wer 8671  [cec 8672   / cqs 8673  Basecbs 17186  TopOpenctopn 17391  0gc0g 17409   qTop cqtop 17473   /s cqus 17475  Grpcgrp 18872  SubGrpcsubg 19059  NrmSGrpcnsg 19060   ~QG cqg 19061  TopOnctopon 22804  Clsdccld 22910  Hauscha 23202  TopGrpctgp 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-rest 17392  df-topn 17393  df-0g 17411  df-topgen 17413  df-qtop 17477  df-imas 17478  df-qus 17479  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063  df-eqg 19064  df-oppg 19285  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-tx 23456  df-hmeo 23649  df-tmd 23966  df-tgp 23967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator