Step | Hyp | Ref
| Expression |
1 | | qustgp.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
2 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | 1, 2 | qus0 18729 |
. . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
4 | 3 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
5 | | tgpgrp 23137 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
6 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) |
7 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
8 | 7, 2 | grpidcl 18522 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
10 | | ovex 7288 |
. . . . . . . 8
⊢ (𝐺 ~QG 𝑌) ∈ V |
11 | 10 | ecelqsi 8520 |
. . . . . . 7
⊢
((0g‘𝐺) ∈ (Base‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
12 | 9, 11 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
13 | 4, 12 | eqeltrrd 2840 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
14 | 13 | snssd 4739 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
15 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) |
16 | 15 | mptpreima 6130 |
. . . . . 6
⊢ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} |
17 | | nsgsubg 18701 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
18 | 17 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺)) |
19 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) |
20 | 7, 19, 2 | eqgid 18723 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
21 | 18, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
22 | 7 | subgss 18671 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺)) |
23 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺)) |
24 | 21, 23 | eqsstrd 3955 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺)) |
25 | | sseqin2 4146 |
. . . . . . . 8
⊢
([(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
26 | 24, 25 | sylib 217 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
27 | 7, 19 | eqger 18721 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
28 | 18, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
29 | 28, 9 | erth 8505 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
31 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
32 | 31 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
33 | 30, 32 | bitrd 278 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
34 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
35 | | fvex 6769 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
36 | 34, 35 | elec 8500 |
. . . . . . . . 9
⊢ (𝑥 ∈
[(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ (0g‘𝐺)(𝐺 ~QG 𝑌)𝑥) |
37 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(0g‘𝐻) ∈ V |
38 | 37 | elsn2 4597 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
39 | | eqcom 2745 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌)) |
40 | 38, 39 | bitri 274 |
. . . . . . . . 9
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔
(0g‘𝐻) =
[𝑥](𝐺 ~QG 𝑌)) |
41 | 33, 36, 40 | 3bitr4g 313 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)})) |
42 | 41 | rabbi2dva 4148 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}}) |
43 | 26, 42, 21 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} = 𝑌) |
44 | 16, 43 | eqtrid 2790 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = 𝑌) |
45 | | simp3 1136 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽)) |
46 | 44, 45 | eqeltrd 2839 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)) |
47 | | qustgphaus.j |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝐺) |
48 | 47, 7 | tgptopon 23141 |
. . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
49 | 48 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
50 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))) |
51 | | eqidd 2739 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺)) |
52 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V) |
53 | | simp1 1134 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) |
54 | 50, 51, 15, 52, 53 | quslem 17171 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
55 | | qtopcld 22772 |
. . . . 5
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
56 | 49, 54, 55 | syl2anc 583 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
57 | 14, 46, 56 | mpbir2and 709 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
58 | 50, 51, 15, 52, 53 | qusval 17170 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺)) |
59 | | qustgphaus.k |
. . . . 5
⊢ 𝐾 = (TopOpen‘𝐻) |
60 | 58, 51, 54, 53, 47, 59 | imastopn 22779 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) |
61 | 60 | fveq2d 6760 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
62 | 57, 61 | eleqtrrd 2842 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘𝐾)) |
63 | 1 | qustgp 23181 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) |
64 | 63 | 3adant3 1130 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp) |
65 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) |
66 | 65, 59 | tgphaus 23176 |
. . 3
⊢ (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
67 | 64, 66 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
68 | 62, 67 | mpbird 256 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) |