| Step | Hyp | Ref
| Expression |
| 1 | | qustgp.h |
. . . . . . . 8
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) |
| 2 | | eqid 2736 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | 1, 2 | qus0 19177 |
. . . . . . 7
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 4 | 3 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 5 | | tgpgrp 24021 |
. . . . . . . . 9
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
| 6 | 5 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ Grp) |
| 7 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 8 | 7, 2 | grpidcl 18953 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
| 9 | 6, 8 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
| 10 | | ovex 7443 |
. . . . . . . 8
⊢ (𝐺 ~QG 𝑌) ∈ V |
| 11 | 10 | ecelqsi 8792 |
. . . . . . 7
⊢
((0g‘𝐺) ∈ (Base‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 12 | 9, 11 | syl 17 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 13 | 4, 12 | eqeltrrd 2836 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (0g‘𝐻) ∈ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 14 | 13 | snssd 4790 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 15 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) |
| 16 | 15 | mptpreima 6232 |
. . . . . 6
⊢ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} |
| 17 | | nsgsubg 19146 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 18 | 17 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (SubGrp‘𝐺)) |
| 19 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌) |
| 20 | 7, 19, 2 | eqgid 19168 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) →
[(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
| 21 | 18, 20 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = 𝑌) |
| 22 | 7 | subgss 19115 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ (Base‘𝐺)) |
| 23 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ⊆ (Base‘𝐺)) |
| 24 | 21, 23 | eqsstrd 3998 |
. . . . . . . 8
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺)) |
| 25 | | sseqin2 4203 |
. . . . . . . 8
⊢
([(0g‘𝐺)](𝐺 ~QG 𝑌) ⊆ (Base‘𝐺) ↔ ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
| 26 | 24, 25 | sylib 218 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = [(0g‘𝐺)](𝐺 ~QG 𝑌)) |
| 27 | 7, 19 | eqger 19166 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
| 28 | 18, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) Er (Base‘𝐺)) |
| 29 | 28, 9 | erth 8775 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
| 30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ [(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌))) |
| 31 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → [(0g‘𝐺)](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 32 | 31 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ([(0g‘𝐺)](𝐺 ~QG 𝑌) = [𝑥](𝐺 ~QG 𝑌) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
| 33 | 30, 32 | bitrd 279 |
. . . . . . . . 9
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g‘𝐺)(𝐺 ~QG 𝑌)𝑥 ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌))) |
| 34 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 35 | | fvex 6894 |
. . . . . . . . . 10
⊢
(0g‘𝐺) ∈ V |
| 36 | 34, 35 | elec 8770 |
. . . . . . . . 9
⊢ (𝑥 ∈
[(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ (0g‘𝐺)(𝐺 ~QG 𝑌)𝑥) |
| 37 | | fvex 6894 |
. . . . . . . . . . 11
⊢
(0g‘𝐻) ∈ V |
| 38 | 37 | elsn2 4646 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔ [𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻)) |
| 39 | | eqcom 2743 |
. . . . . . . . . 10
⊢ ([𝑥](𝐺 ~QG 𝑌) = (0g‘𝐻) ↔ (0g‘𝐻) = [𝑥](𝐺 ~QG 𝑌)) |
| 40 | 38, 39 | bitri 275 |
. . . . . . . . 9
⊢ ([𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)} ↔
(0g‘𝐻) =
[𝑥](𝐺 ~QG 𝑌)) |
| 41 | 33, 36, 40 | 3bitr4g 314 |
. . . . . . . 8
⊢ (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ [(0g‘𝐺)](𝐺 ~QG 𝑌) ↔ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)})) |
| 42 | 41 | rabbi2dva 4206 |
. . . . . . 7
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ((Base‘𝐺) ∩ [(0g‘𝐺)](𝐺 ~QG 𝑌)) = {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}}) |
| 43 | 26, 42, 21 | 3eqtr3d 2779 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {𝑥 ∈ (Base‘𝐺) ∣ [𝑥](𝐺 ~QG 𝑌) ∈ {(0g‘𝐻)}} = 𝑌) |
| 44 | 16, 43 | eqtrid 2783 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) = 𝑌) |
| 45 | | simp3 1138 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝑌 ∈ (Clsd‘𝐽)) |
| 46 | 44, 45 | eqeltrd 2835 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)) |
| 47 | | qustgphaus.j |
. . . . . . 7
⊢ 𝐽 = (TopOpen‘𝐺) |
| 48 | 47, 7 | tgptopon 24025 |
. . . . . 6
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
| 49 | 48 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
| 50 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))) |
| 51 | | eqidd 2737 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Base‘𝐺) = (Base‘𝐺)) |
| 52 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐺 ~QG 𝑌) ∈ V) |
| 53 | | simp1 1136 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐺 ∈ TopGrp) |
| 54 | 50, 51, 15, 52, 53 | quslem 17562 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) |
| 55 | | qtopcld 23656 |
. . . . 5
⊢ ((𝐽 ∈
(TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)):(Base‘𝐺)–onto→((Base‘𝐺) / (𝐺 ~QG 𝑌))) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
| 56 | 49, 54, 55 | syl2anc 584 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → ({(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) ↔ ({(0g‘𝐻)} ⊆ ((Base‘𝐺) / (𝐺 ~QG 𝑌)) ∧ (◡(𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “ {(0g‘𝐻)}) ∈ (Clsd‘𝐽)))) |
| 57 | 14, 46, 56 | mpbir2and 713 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
| 58 | 50, 51, 15, 52, 53 | qusval 17561 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 = ((𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)) “s 𝐺)) |
| 59 | | qustgphaus.k |
. . . . 5
⊢ 𝐾 = (TopOpen‘𝐻) |
| 60 | 58, 51, 54, 53, 47, 59 | imastopn 23663 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 = (𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌)))) |
| 61 | 60 | fveq2d 6885 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (Clsd‘𝐾) = (Clsd‘(𝐽 qTop (𝑥 ∈ (Base‘𝐺) ↦ [𝑥](𝐺 ~QG 𝑌))))) |
| 62 | 57, 61 | eleqtrrd 2838 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → {(0g‘𝐻)} ∈ (Clsd‘𝐾)) |
| 63 | 1 | qustgp 24065 |
. . . 4
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺)) → 𝐻 ∈ TopGrp) |
| 64 | 63 | 3adant3 1132 |
. . 3
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐻 ∈ TopGrp) |
| 65 | | eqid 2736 |
. . . 4
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 66 | 65, 59 | tgphaus 24060 |
. . 3
⊢ (𝐻 ∈ TopGrp → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
| 67 | 64, 66 | syl 17 |
. 2
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → (𝐾 ∈ Haus ↔
{(0g‘𝐻)}
∈ (Clsd‘𝐾))) |
| 68 | 62, 67 | mpbird 257 |
1
⊢ ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ (Clsd‘𝐽)) → 𝐾 ∈ Haus) |