MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgphaus Structured version   Visualization version   GIF version

Theorem qustgphaus 23847
Description: The quotient of a topological group by a closed normal subgroup is a Hausdorff topological group. In particular, the quotient by the closure of the identity is a Hausdorff topological group, isomorphic to both the Kolmogorov quotient and the Hausdorff quotient operations on topological spaces (because T0 and Hausdorff coincide for topological groups). (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG π‘Œ))
qustgphaus.j 𝐽 = (TopOpenβ€˜πΊ)
qustgphaus.k 𝐾 = (TopOpenβ€˜π»)
Assertion
Ref Expression
qustgphaus ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐾 ∈ Haus)

Proof of Theorem qustgphaus
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 qustgp.h . . . . . . . 8 𝐻 = (𝐺 /s (𝐺 ~QG π‘Œ))
2 eqid 2730 . . . . . . . 8 (0gβ€˜πΊ) = (0gβ€˜πΊ)
31, 2qus0 19104 . . . . . . 7 (π‘Œ ∈ (NrmSGrpβ€˜πΊ) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = (0gβ€˜π»))
433ad2ant2 1132 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = (0gβ€˜π»))
5 tgpgrp 23802 . . . . . . . . 9 (𝐺 ∈ TopGrp β†’ 𝐺 ∈ Grp)
653ad2ant1 1131 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐺 ∈ Grp)
7 eqid 2730 . . . . . . . . 9 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
87, 2grpidcl 18886 . . . . . . . 8 (𝐺 ∈ Grp β†’ (0gβ€˜πΊ) ∈ (Baseβ€˜πΊ))
96, 8syl 17 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (0gβ€˜πΊ) ∈ (Baseβ€˜πΊ))
10 ovex 7444 . . . . . . . 8 (𝐺 ~QG π‘Œ) ∈ V
1110ecelqsi 8769 . . . . . . 7 ((0gβ€˜πΊ) ∈ (Baseβ€˜πΊ) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) ∈ ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)))
129, 11syl 17 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) ∈ ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)))
134, 12eqeltrrd 2832 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (0gβ€˜π») ∈ ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)))
1413snssd 4811 . . . 4 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ {(0gβ€˜π»)} βŠ† ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)))
15 eqid 2730 . . . . . . 7 (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) = (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ))
1615mptpreima 6236 . . . . . 6 (β—‘(π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œ {(0gβ€˜π»)}) = {π‘₯ ∈ (Baseβ€˜πΊ) ∣ [π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)}}
17 nsgsubg 19074 . . . . . . . . . . 11 (π‘Œ ∈ (NrmSGrpβ€˜πΊ) β†’ π‘Œ ∈ (SubGrpβ€˜πΊ))
18173ad2ant2 1132 . . . . . . . . . 10 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ π‘Œ ∈ (SubGrpβ€˜πΊ))
19 eqid 2730 . . . . . . . . . . 11 (𝐺 ~QG π‘Œ) = (𝐺 ~QG π‘Œ)
207, 19, 2eqgid 19096 . . . . . . . . . 10 (π‘Œ ∈ (SubGrpβ€˜πΊ) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = π‘Œ)
2118, 20syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = π‘Œ)
227subgss 19043 . . . . . . . . . 10 (π‘Œ ∈ (SubGrpβ€˜πΊ) β†’ π‘Œ βŠ† (Baseβ€˜πΊ))
2318, 22syl 17 . . . . . . . . 9 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ π‘Œ βŠ† (Baseβ€˜πΊ))
2421, 23eqsstrd 4019 . . . . . . . 8 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) βŠ† (Baseβ€˜πΊ))
25 sseqin2 4214 . . . . . . . 8 ([(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) βŠ† (Baseβ€˜πΊ) ↔ ((Baseβ€˜πΊ) ∩ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ)) = [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ))
2624, 25sylib 217 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ ((Baseβ€˜πΊ) ∩ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ)) = [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ))
277, 19eqger 19094 . . . . . . . . . . . . 13 (π‘Œ ∈ (SubGrpβ€˜πΊ) β†’ (𝐺 ~QG π‘Œ) Er (Baseβ€˜πΊ))
2818, 27syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (𝐺 ~QG π‘Œ) Er (Baseβ€˜πΊ))
2928, 9erth 8754 . . . . . . . . . . 11 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ ((0gβ€˜πΊ)(𝐺 ~QG π‘Œ)π‘₯ ↔ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = [π‘₯](𝐺 ~QG π‘Œ)))
3029adantr 479 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ ((0gβ€˜πΊ)(𝐺 ~QG π‘Œ)π‘₯ ↔ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = [π‘₯](𝐺 ~QG π‘Œ)))
314adantr 479 . . . . . . . . . . 11 (((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = (0gβ€˜π»))
3231eqeq1d 2732 . . . . . . . . . 10 (((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ ([(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) = [π‘₯](𝐺 ~QG π‘Œ) ↔ (0gβ€˜π») = [π‘₯](𝐺 ~QG π‘Œ)))
3330, 32bitrd 278 . . . . . . . . 9 (((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ ((0gβ€˜πΊ)(𝐺 ~QG π‘Œ)π‘₯ ↔ (0gβ€˜π») = [π‘₯](𝐺 ~QG π‘Œ)))
34 vex 3476 . . . . . . . . . 10 π‘₯ ∈ V
35 fvex 6903 . . . . . . . . . 10 (0gβ€˜πΊ) ∈ V
3634, 35elec 8749 . . . . . . . . 9 (π‘₯ ∈ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) ↔ (0gβ€˜πΊ)(𝐺 ~QG π‘Œ)π‘₯)
37 fvex 6903 . . . . . . . . . . 11 (0gβ€˜π») ∈ V
3837elsn2 4666 . . . . . . . . . 10 ([π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)} ↔ [π‘₯](𝐺 ~QG π‘Œ) = (0gβ€˜π»))
39 eqcom 2737 . . . . . . . . . 10 ([π‘₯](𝐺 ~QG π‘Œ) = (0gβ€˜π») ↔ (0gβ€˜π») = [π‘₯](𝐺 ~QG π‘Œ))
4038, 39bitri 274 . . . . . . . . 9 ([π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)} ↔ (0gβ€˜π») = [π‘₯](𝐺 ~QG π‘Œ))
4133, 36, 403bitr4g 313 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) ∧ π‘₯ ∈ (Baseβ€˜πΊ)) β†’ (π‘₯ ∈ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ) ↔ [π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)}))
4241rabbi2dva 4216 . . . . . . 7 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ ((Baseβ€˜πΊ) ∩ [(0gβ€˜πΊ)](𝐺 ~QG π‘Œ)) = {π‘₯ ∈ (Baseβ€˜πΊ) ∣ [π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)}})
4326, 42, 213eqtr3d 2778 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ {π‘₯ ∈ (Baseβ€˜πΊ) ∣ [π‘₯](𝐺 ~QG π‘Œ) ∈ {(0gβ€˜π»)}} = π‘Œ)
4416, 43eqtrid 2782 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (β—‘(π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œ {(0gβ€˜π»)}) = π‘Œ)
45 simp3 1136 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ π‘Œ ∈ (Clsdβ€˜π½))
4644, 45eqeltrd 2831 . . . 4 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (β—‘(π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œ {(0gβ€˜π»)}) ∈ (Clsdβ€˜π½))
47 qustgphaus.j . . . . . . 7 𝐽 = (TopOpenβ€˜πΊ)
4847, 7tgptopon 23806 . . . . . 6 (𝐺 ∈ TopGrp β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)))
49483ad2ant1 1131 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)))
501a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐻 = (𝐺 /s (𝐺 ~QG π‘Œ)))
51 eqidd 2731 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (Baseβ€˜πΊ) = (Baseβ€˜πΊ))
5210a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (𝐺 ~QG π‘Œ) ∈ V)
53 simp1 1134 . . . . . 6 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐺 ∈ TopGrp)
5450, 51, 15, 52, 53quslem 17493 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)):(Baseβ€˜πΊ)–ontoβ†’((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)))
55 qtopcld 23437 . . . . 5 ((𝐽 ∈ (TopOnβ€˜(Baseβ€˜πΊ)) ∧ (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)):(Baseβ€˜πΊ)–ontoβ†’((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ))) β†’ ({(0gβ€˜π»)} ∈ (Clsdβ€˜(𝐽 qTop (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)))) ↔ ({(0gβ€˜π»)} βŠ† ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)) ∧ (β—‘(π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œ {(0gβ€˜π»)}) ∈ (Clsdβ€˜π½))))
5649, 54, 55syl2anc 582 . . . 4 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ ({(0gβ€˜π»)} ∈ (Clsdβ€˜(𝐽 qTop (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)))) ↔ ({(0gβ€˜π»)} βŠ† ((Baseβ€˜πΊ) / (𝐺 ~QG π‘Œ)) ∧ (β—‘(π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œ {(0gβ€˜π»)}) ∈ (Clsdβ€˜π½))))
5714, 46, 56mpbir2and 709 . . 3 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ {(0gβ€˜π»)} ∈ (Clsdβ€˜(𝐽 qTop (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)))))
5850, 51, 15, 52, 53qusval 17492 . . . . 5 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐻 = ((π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)) β€œs 𝐺))
59 qustgphaus.k . . . . 5 𝐾 = (TopOpenβ€˜π»)
6058, 51, 54, 53, 47, 59imastopn 23444 . . . 4 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐾 = (𝐽 qTop (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ))))
6160fveq2d 6894 . . 3 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (Clsdβ€˜πΎ) = (Clsdβ€˜(𝐽 qTop (π‘₯ ∈ (Baseβ€˜πΊ) ↦ [π‘₯](𝐺 ~QG π‘Œ)))))
6257, 61eleqtrrd 2834 . 2 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ {(0gβ€˜π»)} ∈ (Clsdβ€˜πΎ))
631qustgp 23846 . . . 4 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ)) β†’ 𝐻 ∈ TopGrp)
64633adant3 1130 . . 3 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐻 ∈ TopGrp)
65 eqid 2730 . . . 4 (0gβ€˜π») = (0gβ€˜π»)
6665, 59tgphaus 23841 . . 3 (𝐻 ∈ TopGrp β†’ (𝐾 ∈ Haus ↔ {(0gβ€˜π»)} ∈ (Clsdβ€˜πΎ)))
6764, 66syl 17 . 2 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ (𝐾 ∈ Haus ↔ {(0gβ€˜π»)} ∈ (Clsdβ€˜πΎ)))
6862, 67mpbird 256 1 ((𝐺 ∈ TopGrp ∧ π‘Œ ∈ (NrmSGrpβ€˜πΊ) ∧ π‘Œ ∈ (Clsdβ€˜π½)) β†’ 𝐾 ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  {crab 3430  Vcvv 3472   ∩ cin 3946   βŠ† wss 3947  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  β—‘ccnv 5674   β€œ cima 5678  β€“ontoβ†’wfo 6540  β€˜cfv 6542  (class class class)co 7411   Er wer 8702  [cec 8703   / cqs 8704  Basecbs 17148  TopOpenctopn 17371  0gc0g 17389   qTop cqtop 17453   /s cqus 17455  Grpcgrp 18855  SubGrpcsubg 19036  NrmSGrpcnsg 19037   ~QG cqg 19038  TopOnctopon 22632  Clsdccld 22740  Hauscha 23032  TopGrpctgp 23795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-ec 8707  df-qs 8711  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-rest 17372  df-topn 17373  df-0g 17391  df-topgen 17393  df-qtop 17457  df-imas 17458  df-qus 17459  df-plusf 18564  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-nsg 19040  df-eqg 19041  df-oppg 19251  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-cn 22951  df-cnp 22952  df-t1 23038  df-haus 23039  df-tx 23286  df-hmeo 23479  df-tmd 23796  df-tgp 23797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator