Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem68 Structured version   Visualization version   GIF version

Theorem fourierdlem68 42021
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem68.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem68.xre (𝜑𝑋 ∈ ℝ)
fourierdlem68.a (𝜑𝐴 ∈ ℝ)
fourierdlem68.b (𝜑𝐵 ∈ ℝ)
fourierdlem68.altb (𝜑𝐴 < 𝐵)
fourierdlem68.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem68.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem68.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem68.d (𝜑𝐷 ∈ ℝ)
fourierdlem68.fbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
fourierdlem68.e (𝜑𝐸 ∈ ℝ)
fourierdlem68.fdvbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
fourierdlem68.c (𝜑𝐶 ∈ ℝ)
fourierdlem68.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem68 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Distinct variable groups:   𝐴,𝑏,𝑠   𝑡,𝐴,𝑠   𝐵,𝑏,𝑠   𝑡,𝐵   𝐶,𝑏,𝑠   𝐷,𝑏,𝑠   𝑡,𝐷   𝐸,𝑏,𝑠   𝑡,𝐸   𝐹,𝑏,𝑠   𝑡,𝐹   𝑋,𝑏,𝑠   𝑡,𝑋   𝜑,𝑏,𝑠   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝑂(𝑡,𝑠,𝑏)

Proof of Theorem fourierdlem68
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem68.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem68.xre . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem68.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 fourierdlem68.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
5 fourierdlem68.fdv . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6 ioossicc 12672 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7 fourierdlem68.ab . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
86, 7syl5ss 3900 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
9 fourierdlem68.n0 . . . . . . 7 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
106sseli 3885 . . . . . . 7 (0 ∈ (𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵))
119, 10nsyl 142 . . . . . 6 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
12 fourierdlem68.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
13 fourierdlem68.o . . . . . 6 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
141, 2, 3, 4, 5, 8, 11, 12, 13fourierdlem57 42010 . . . . 5 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
1514simpli 484 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
1615simpld 495 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
1716fdmd 6391 . 2 (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵))
18 eqid 2795 . . . . . 6 (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2))))
19 fourierdlem68.altb . . . . . . 7 (𝜑𝐴 < 𝐵)
203, 4, 19ltled 10635 . . . . . 6 (𝜑𝐴𝐵)
21 2re 11559 . . . . . . . . . . 11 2 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ)
233, 4iccssred 41341 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2423sselda 3889 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
2524rehalfcld 11732 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ)
2625resincld 15329 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ)
2722, 26remulcld 10517 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ ℝ)
28 2cnd 11563 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
2926recnd 10515 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ)
30 2ne0 11589 . . . . . . . . . . 11 2 ≠ 0
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
327sselda 3889 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π))
33 eqcom 2802 . . . . . . . . . . . . . . . . 17 (𝑡 = 0 ↔ 0 = 𝑡)
3433biimpi 217 . . . . . . . . . . . . . . . 16 (𝑡 = 0 → 0 = 𝑡)
3534adantl 482 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡)
36 simpl 483 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵))
3735, 36eqeltrd 2883 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
3837adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
399ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
4038, 39pm2.65da 813 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0)
4140neqned 2991 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0)
42 fourierdlem44 41998 . . . . . . . . . . 11 ((𝑡 ∈ (-π[,]π) ∧ 𝑡 ≠ 0) → (sin‘(𝑡 / 2)) ≠ 0)
4332, 41, 42syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0)
4428, 29, 31, 43mulne0d 11140 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0)
45 eldifsn 4626 . . . . . . . . 9 ((2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2 · (sin‘(𝑡 / 2))) ≠ 0))
4627, 44, 45sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}))
4746, 18fmptd 6741 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
48 difss 4029 . . . . . . . . . 10 (ℝ ∖ {0}) ⊆ ℝ
49 ax-resscn 10440 . . . . . . . . . 10 ℝ ⊆ ℂ
5048, 49sstri 3898 . . . . . . . . 9 (ℝ ∖ {0}) ⊆ ℂ
5150a1i 11 . . . . . . . 8 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
5223, 49syl6ss 3901 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
53 2cnd 11563 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
54 ssid 3910 . . . . . . . . . . 11 ℂ ⊆ ℂ
5554a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5652, 53, 55constcncfg 41715 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ))
57 sincn 24715 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
5857a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5952, 55idcncfg 41716 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
60 eldifsn 4626 . . . . . . . . . . . . . 14 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
6128, 31, 60sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖ {0}))
62 eqid 2795 . . . . . . . . . . . . 13 (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2)
6361, 62fmptd 6741 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0}))
64 difssd 4030 . . . . . . . . . . . . 13 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
65 cncffvrn 23189 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6664, 56, 65syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6763, 66mpbird 258 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
6859, 67divcncf 23731 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6958, 68cncfmpt1f 23204 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7056, 69mulcncf 23730 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
71 cncffvrn 23189 . . . . . . . 8 (((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7251, 70, 71syl2anc 584 . . . . . . 7 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7347, 72mpbird 258 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
7418, 3, 4, 20, 73cncficcgt0 41732 . . . . 5 (𝜑 → ∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))))
75 reelprrecn 10475 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
7675a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ℝ ∈ {ℝ, ℂ})
771adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
782adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
79 elioore 12618 . . . . . . . . . . . . 13 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
8079adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
8178, 80readdcld 10516 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8277, 81ffvelrnd 6717 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8312adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
8482, 83resubcld 10916 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
8584recnd 10515 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
86853ad2antl1 1178 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8775a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
8882recnd 10515 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
895adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
902, 3readdcld 10516 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
9190rexrd 10537 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
9291adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
932, 4readdcld 10516 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
9493rexrd 10537 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
9594adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
963adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
9796rexrd 10537 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
984rexrd 10537 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
9998adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
100 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
101 ioogtlb 41331 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10297, 99, 100, 101syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10396, 80, 78, 102ltadd2dd 10646 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
1044adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
105 iooltub 41347 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10697, 99, 100, 105syl3anc 1364 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10780, 104, 78, 106ltadd2dd 10646 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
10892, 95, 81, 103, 107eliood 41334 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
10989, 108ffvelrnd 6717 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
110 eqid 2795 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
1111, 2, 3, 4, 110, 5fourierdlem28 41982 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
11283recnd 10515 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
113 0red 10490 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
114 iooretop 23057 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
115 eqid 2795 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
116115tgioo2 23094 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
117114, 116eleqtri 2881 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
11912recnd 10515 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
12087, 118, 119dvmptconst 41760 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
12187, 88, 109, 111, 112, 113, 120dvmptsub 24247 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
122109recnd 10515 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
123122subid1d 10834 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
124123mpteq2dva 5055 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
125121, 124eqtrd 2831 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1261253ad2ant1 1126 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1271223ad2antl1 1178 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
128 2cnd 11563 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
12979recnd 10515 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
130129halfcld 11730 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
131130sincld 15316 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
132128, 131mulcld 10507 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
133132adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
134 fourierdlem68.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
1351343ad2ant1 1126 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝐸 ∈ ℝ)
136 1re 10487 . . . . . . . . 9 1 ∈ ℝ
13721, 136remulcli 10503 . . . . . . . 8 (2 · 1) ∈ ℝ
138137a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (2 · 1) ∈ ℝ)
139 1red 10488 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 1 ∈ ℝ)
140 fourierdlem68.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
141119abscld 14630 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
142140, 141readdcld 10516 . . . . . . . 8 (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ)
1431423ad2ant1 1126 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
144 simpl 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝜑)
145144, 108jca 512 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
146 eleq1 2870 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
147146anbi2d 628 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
148 fveq2 6538 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
149148fveq2d 6542 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
150149breq1d 4972 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
151147, 150imbi12d 346 . . . . . . . . . 10 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)))
152 fourierdlem68.fdvbd . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
153151, 152vtoclg 3510 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
15481, 145, 153sylc 65 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
1551543ad2antl1 1178 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
156128, 131absmuld 14648 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) = ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))))
157 0le2 11587 . . . . . . . . . . . 12 0 ≤ 2
158 absid 14490 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
15921, 157, 158mp2an 688 . . . . . . . . . . 11 (abs‘2) = 2
160159oveq1i 7026 . . . . . . . . . 10 ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 · (abs‘(sin‘(𝑠 / 2))))
161131abscld 14630 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈ ℝ)
162 1red 10488 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ)
16321a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ)
164157a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2)
16579rehalfcld 11732 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ)
166 abssinbd 41122 . . . . . . . . . . . 12 ((𝑠 / 2) ∈ ℝ → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
167165, 166syl 17 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
168161, 162, 163, 164, 167lemul2ad 11428 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
169160, 168eqbrtrid 4997 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
170156, 169eqbrtrd 4984 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
171170adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
172 abscosbd 41104 . . . . . . . . 9 ((𝑠 / 2) ∈ ℝ → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
173100, 165, 1723syl 18 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
1741733ad2antl1 1178 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
17585abscld 14630 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
17688abscld 14630 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ)
177112abscld 14630 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ)
178176, 177readdcld 10516 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ)
179140adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ)
180179, 177readdcld 10516 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
18188, 112abs2dif2d 14652 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)))
182 fveq2 6538 . . . . . . . . . . . . . . 15 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
183182fveq2d 6542 . . . . . . . . . . . . . 14 (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠))))
184183breq1d 4972 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
185147, 184imbi12d 346 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)))
186 fourierdlem68.fbd . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
187185, 186vtoclg 3510 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
188108, 145, 187sylc 65 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)
189176, 179, 177, 188leadd1dd 11102 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶)))
190175, 178, 180, 181, 189letrd 10644 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
1911903ad2antl1 1178 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
19214simpri 486 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
193192a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
194130coscld 15317 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
195194adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
196 simp2 1130 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝑐 ∈ ℝ+)
197 oveq1 7023 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
198197fveq2d 6542 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
199198oveq2d 7032 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
200199fveq2d 6542 . . . . . . . . . . 11 (𝑡 = 𝑠 → (abs‘(2 · (sin‘(𝑡 / 2)))) = (abs‘(2 · (sin‘(𝑠 / 2)))))
201200breq2d 4974 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
202201cbvralv 3403 . . . . . . . . 9 (∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
203 nfv 1892 . . . . . . . . . . 11 𝑠𝜑
204 nfra1 3186 . . . . . . . . . . 11 𝑠𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))
205203, 204nfan 1881 . . . . . . . . . 10 𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
206 simplr 765 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2076, 100sseldi 3887 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
208207adantlr 711 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
209 rspa 3173 . . . . . . . . . . . 12 ((∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
210206, 208, 209syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
211210ex 413 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
212205, 211ralrimi 3183 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
213202, 212sylan2b 593 . . . . . . . 8 ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2142133adant2 1124 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
215 eqid 2795 . . . . . . 7 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
21676, 86, 126, 127, 133, 135, 138, 139, 143, 155, 171, 174, 191, 193, 195, 196, 214, 215dvdivbd 41769 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
217216rexlimdv3a 3249 . . . . 5 (𝜑 → (∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
21874, 217mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
219 nfcv 2949 . . . . . . . . 9 𝑠
220 nfcv 2949 . . . . . . . . 9 𝑠 D
221 nfmpt1 5058 . . . . . . . . . 10 𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
22213, 221nfcxfr 2947 . . . . . . . . 9 𝑠𝑂
223219, 220, 222nfov 7046 . . . . . . . 8 𝑠(ℝ D 𝑂)
224223nfdm 5705 . . . . . . 7 𝑠dom (ℝ D 𝑂)
225 nfcv 2949 . . . . . . 7 𝑠(𝐴(,)𝐵)
226224, 225raleqf 3357 . . . . . 6 (dom (ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
22717, 226syl 17 . . . . 5 (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
228227rexbidv 3260 . . . 4 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
229218, 228mpbird 258 . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
23013a1i 11 . . . . . . . 8 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
231230oveq2d 7032 . . . . . . 7 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
232231fveq1d 6540 . . . . . 6 (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
233232fveq2d 6542 . . . . 5 (𝜑 → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
234233breq1d 4972 . . . 4 (𝜑 → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
235234rexralbidv 3264 . . 3 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
236229, 235mpbird 258 . 2 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
23717, 236jca 512 1 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  cdif 3856  wss 3859  {csn 4472  {cpr 4474   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cres 5445  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   · cmul 10388  *cxr 10520   < clt 10521  cle 10522  cmin 10717  -cneg 10718   / cdiv 11145  2c2 11540  +crp 12239  (,)cioo 12588  [,]cicc 12591  cexp 13279  abscabs 14427  sincsin 15250  cosccos 15251  πcpi 15253  t crest 16523  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  cnccncf 23167   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-t1 21606  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  fourierdlem80  42033
  Copyright terms: Public domain W3C validator