Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem68 Structured version   Visualization version   GIF version

Theorem fourierdlem68 46172
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem68.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem68.xre (𝜑𝑋 ∈ ℝ)
fourierdlem68.a (𝜑𝐴 ∈ ℝ)
fourierdlem68.b (𝜑𝐵 ∈ ℝ)
fourierdlem68.altb (𝜑𝐴 < 𝐵)
fourierdlem68.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem68.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem68.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem68.d (𝜑𝐷 ∈ ℝ)
fourierdlem68.fbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
fourierdlem68.e (𝜑𝐸 ∈ ℝ)
fourierdlem68.fdvbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
fourierdlem68.c (𝜑𝐶 ∈ ℝ)
fourierdlem68.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem68 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Distinct variable groups:   𝐴,𝑏,𝑠   𝑡,𝐴,𝑠   𝐵,𝑏,𝑠   𝑡,𝐵   𝐶,𝑏,𝑠   𝐷,𝑏,𝑠   𝑡,𝐷   𝐸,𝑏,𝑠   𝑡,𝐸   𝐹,𝑏,𝑠   𝑡,𝐹   𝑋,𝑏,𝑠   𝑡,𝑋   𝜑,𝑏,𝑠   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝑂(𝑡,𝑠,𝑏)

Proof of Theorem fourierdlem68
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem68.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem68.xre . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem68.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 fourierdlem68.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
5 fourierdlem68.fdv . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6 ioossicc 13394 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7 fourierdlem68.ab . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
86, 7sstrid 3958 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
9 fourierdlem68.n0 . . . . . . 7 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
106sseli 3942 . . . . . . 7 (0 ∈ (𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵))
119, 10nsyl 140 . . . . . 6 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
12 fourierdlem68.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
13 fourierdlem68.o . . . . . 6 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
141, 2, 3, 4, 5, 8, 11, 12, 13fourierdlem57 46161 . . . . 5 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
1514simpli 483 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
1615simpld 494 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
1716fdmd 6698 . 2 (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵))
18 eqid 2729 . . . . . 6 (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2))))
19 fourierdlem68.altb . . . . . . 7 (𝜑𝐴 < 𝐵)
203, 4, 19ltled 11322 . . . . . 6 (𝜑𝐴𝐵)
21 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ)
233, 4iccssred 13395 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2423sselda 3946 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
2524rehalfcld 12429 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ)
2625resincld 16111 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ)
2722, 26remulcld 11204 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ ℝ)
28 2cnd 12264 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
2926recnd 11202 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ)
30 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
327sselda 3946 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π))
33 eqcom 2736 . . . . . . . . . . . . . . . . 17 (𝑡 = 0 ↔ 0 = 𝑡)
3433biimpi 216 . . . . . . . . . . . . . . . 16 (𝑡 = 0 → 0 = 𝑡)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡)
36 simpl 482 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵))
3735, 36eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
3837adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
399ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
4038, 39pm2.65da 816 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0)
4140neqned 2932 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0)
42 fourierdlem44 46149 . . . . . . . . . . 11 ((𝑡 ∈ (-π[,]π) ∧ 𝑡 ≠ 0) → (sin‘(𝑡 / 2)) ≠ 0)
4332, 41, 42syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0)
4428, 29, 31, 43mulne0d 11830 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0)
45 eldifsn 4750 . . . . . . . . 9 ((2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2 · (sin‘(𝑡 / 2))) ≠ 0))
4627, 44, 45sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}))
4746, 18fmptd 7086 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
48 difss 4099 . . . . . . . . . 10 (ℝ ∖ {0}) ⊆ ℝ
49 ax-resscn 11125 . . . . . . . . . 10 ℝ ⊆ ℂ
5048, 49sstri 3956 . . . . . . . . 9 (ℝ ∖ {0}) ⊆ ℂ
5150a1i 11 . . . . . . . 8 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
5223, 49sstrdi 3959 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
53 2cnd 12264 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
54 ssid 3969 . . . . . . . . . . 11 ℂ ⊆ ℂ
5554a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5652, 53, 55constcncfg 45870 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ))
57 sincn 26354 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
5857a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5952, 55idcncfg 45871 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
60 eldifsn 4750 . . . . . . . . . . . . . 14 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
6128, 31, 60sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖ {0}))
62 eqid 2729 . . . . . . . . . . . . 13 (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2)
6361, 62fmptd 7086 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0}))
64 difssd 4100 . . . . . . . . . . . . 13 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
65 cncfcdm 24791 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6664, 56, 65syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6763, 66mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
6859, 67divcncf 25348 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6958, 68cncfmpt1f 24807 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7056, 69mulcncf 25346 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
71 cncfcdm 24791 . . . . . . . 8 (((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7251, 70, 71syl2anc 584 . . . . . . 7 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7347, 72mpbird 257 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
7418, 3, 4, 20, 73cncficcgt0 45886 . . . . 5 (𝜑 → ∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))))
75 reelprrecn 11160 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
7675a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ℝ ∈ {ℝ, ℂ})
771adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
782adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
79 elioore 13336 . . . . . . . . . . . . 13 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
8079adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
8178, 80readdcld 11203 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8277, 81ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8312adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
8482, 83resubcld 11606 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
8584recnd 11202 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
86853ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8775a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
8882recnd 11202 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
895adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
902, 3readdcld 11203 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
9190rexrd 11224 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
9291adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
932, 4readdcld 11203 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
9493rexrd 11224 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
963adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
9796rexrd 11224 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
984rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
9998adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
100 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
101 ioogtlb 45493 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10297, 99, 100, 101syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10396, 80, 78, 102ltadd2dd 11333 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
1044adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
105 iooltub 45508 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10697, 99, 100, 105syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10780, 104, 78, 106ltadd2dd 11333 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
10892, 95, 81, 103, 107eliood 45496 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
10989, 108ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
110 eqid 2729 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
1111, 2, 3, 4, 110, 5fourierdlem28 46133 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
11283recnd 11202 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
113 0red 11177 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
114 iooretop 24653 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
115 tgioo4 24693 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
116114, 115eleqtri 2826 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
117116a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
11812recnd 11202 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
11987, 117, 118dvmptconst 45913 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
12087, 88, 109, 111, 112, 113, 119dvmptsub 25871 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
121109recnd 11202 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
122121subid1d 11522 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
123122mpteq2dva 5200 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
124120, 123eqtrd 2764 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1251243ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1261213ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
127 2cnd 12264 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
12879recnd 11202 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
129128halfcld 12427 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
130129sincld 16098 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
131127, 130mulcld 11194 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
132131adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
133 fourierdlem68.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
1341333ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝐸 ∈ ℝ)
135 1re 11174 . . . . . . . . 9 1 ∈ ℝ
13621, 135remulcli 11190 . . . . . . . 8 (2 · 1) ∈ ℝ
137136a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (2 · 1) ∈ ℝ)
138 1red 11175 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 1 ∈ ℝ)
139 fourierdlem68.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
140118abscld 15405 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
141139, 140readdcld 11203 . . . . . . . 8 (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ)
1421413ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
143 simpl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝜑)
144143, 108jca 511 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
145 eleq1 2816 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
146145anbi2d 630 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
147 fveq2 6858 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
148147fveq2d 6862 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
149148breq1d 5117 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
150146, 149imbi12d 344 . . . . . . . . . 10 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)))
151 fourierdlem68.fdvbd . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
152150, 151vtoclg 3520 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
15381, 144, 152sylc 65 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
1541533ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
155127, 130absmuld 15423 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) = ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))))
156 0le2 12288 . . . . . . . . . . . 12 0 ≤ 2
157 absid 15262 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
15821, 156, 157mp2an 692 . . . . . . . . . . 11 (abs‘2) = 2
159158oveq1i 7397 . . . . . . . . . 10 ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 · (abs‘(sin‘(𝑠 / 2))))
160130abscld 15405 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈ ℝ)
161 1red 11175 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ)
16221a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ)
163156a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2)
16479rehalfcld 12429 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ)
165 abssinbd 45293 . . . . . . . . . . . 12 ((𝑠 / 2) ∈ ℝ → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
166164, 165syl 17 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
167160, 161, 162, 163, 166lemul2ad 12123 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
168159, 167eqbrtrid 5142 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
169155, 168eqbrtrd 5129 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
170169adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
171 abscosbd 45277 . . . . . . . . 9 ((𝑠 / 2) ∈ ℝ → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
172100, 164, 1713syl 18 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
1731723ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
17485abscld 15405 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
17588abscld 15405 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ)
176112abscld 15405 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ)
177175, 176readdcld 11203 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ)
178139adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ)
179178, 176readdcld 11203 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
18088, 112abs2dif2d 15427 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)))
181 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
182181fveq2d 6862 . . . . . . . . . . . . . 14 (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠))))
183182breq1d 5117 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
184146, 183imbi12d 344 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)))
185 fourierdlem68.fbd . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
186184, 185vtoclg 3520 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
187108, 144, 186sylc 65 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)
188175, 178, 176, 187leadd1dd 11792 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶)))
189174, 177, 179, 180, 188letrd 11331 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
1901893ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
19114simpri 485 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
192191a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
193129coscld 16099 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
194193adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
195 simp2 1137 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝑐 ∈ ℝ+)
196 oveq1 7394 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
197196fveq2d 6862 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
198197oveq2d 7403 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
199198fveq2d 6862 . . . . . . . . . . 11 (𝑡 = 𝑠 → (abs‘(2 · (sin‘(𝑡 / 2)))) = (abs‘(2 · (sin‘(𝑠 / 2)))))
200199breq2d 5119 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
201200cbvralvw 3215 . . . . . . . . 9 (∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
202 nfv 1914 . . . . . . . . . . 11 𝑠𝜑
203 nfra1 3261 . . . . . . . . . . 11 𝑠𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))
204202, 203nfan 1899 . . . . . . . . . 10 𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
205 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2066, 100sselid 3944 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
207206adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
208 rspa 3226 . . . . . . . . . . . 12 ((∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
209205, 207, 208syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
210209ex 412 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
211204, 210ralrimi 3235 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
212201, 211sylan2b 594 . . . . . . . 8 ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2132123adant2 1131 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
214 eqid 2729 . . . . . . 7 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
21576, 86, 125, 126, 132, 134, 137, 138, 142, 154, 170, 173, 190, 192, 194, 195, 213, 214dvdivbd 45921 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
216215rexlimdv3a 3138 . . . . 5 (𝜑 → (∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
21774, 216mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
218 nfcv 2891 . . . . . . . . 9 𝑠
219 nfcv 2891 . . . . . . . . 9 𝑠 D
220 nfmpt1 5206 . . . . . . . . . 10 𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
22113, 220nfcxfr 2889 . . . . . . . . 9 𝑠𝑂
222218, 219, 221nfov 7417 . . . . . . . 8 𝑠(ℝ D 𝑂)
223222nfdm 5915 . . . . . . 7 𝑠dom (ℝ D 𝑂)
224 nfcv 2891 . . . . . . 7 𝑠(𝐴(,)𝐵)
225223, 224raleqf 3329 . . . . . 6 (dom (ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
22617, 225syl 17 . . . . 5 (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
227226rexbidv 3157 . . . 4 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
228217, 227mpbird 257 . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
22913a1i 11 . . . . . . . 8 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
230229oveq2d 7403 . . . . . . 7 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
231230fveq1d 6860 . . . . . 6 (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
232231fveq2d 6862 . . . . 5 (𝜑 → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
233232breq1d 5117 . . . 4 (𝜑 → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
234233rexralbidv 3203 . . 3 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
235228, 234mpbird 257 . 2 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
23617, 235jca 511 1 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  [,]cicc 13309  cexp 14026  abscabs 15200  sincsin 16029  cosccos 16030  πcpi 16032  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierdlem80  46184
  Copyright terms: Public domain W3C validator