Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem68 Structured version   Visualization version   GIF version

Theorem fourierdlem68 46179
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem68.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem68.xre (𝜑𝑋 ∈ ℝ)
fourierdlem68.a (𝜑𝐴 ∈ ℝ)
fourierdlem68.b (𝜑𝐵 ∈ ℝ)
fourierdlem68.altb (𝜑𝐴 < 𝐵)
fourierdlem68.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem68.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem68.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem68.d (𝜑𝐷 ∈ ℝ)
fourierdlem68.fbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
fourierdlem68.e (𝜑𝐸 ∈ ℝ)
fourierdlem68.fdvbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
fourierdlem68.c (𝜑𝐶 ∈ ℝ)
fourierdlem68.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem68 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Distinct variable groups:   𝐴,𝑏,𝑠   𝑡,𝐴,𝑠   𝐵,𝑏,𝑠   𝑡,𝐵   𝐶,𝑏,𝑠   𝐷,𝑏,𝑠   𝑡,𝐷   𝐸,𝑏,𝑠   𝑡,𝐸   𝐹,𝑏,𝑠   𝑡,𝐹   𝑋,𝑏,𝑠   𝑡,𝑋   𝜑,𝑏,𝑠   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝑂(𝑡,𝑠,𝑏)

Proof of Theorem fourierdlem68
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem68.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem68.xre . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem68.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 fourierdlem68.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
5 fourierdlem68.fdv . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6 ioossicc 13401 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7 fourierdlem68.ab . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
86, 7sstrid 3961 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
9 fourierdlem68.n0 . . . . . . 7 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
106sseli 3945 . . . . . . 7 (0 ∈ (𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵))
119, 10nsyl 140 . . . . . 6 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
12 fourierdlem68.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
13 fourierdlem68.o . . . . . 6 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
141, 2, 3, 4, 5, 8, 11, 12, 13fourierdlem57 46168 . . . . 5 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
1514simpli 483 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
1615simpld 494 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
1716fdmd 6701 . 2 (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵))
18 eqid 2730 . . . . . 6 (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2))))
19 fourierdlem68.altb . . . . . . 7 (𝜑𝐴 < 𝐵)
203, 4, 19ltled 11329 . . . . . 6 (𝜑𝐴𝐵)
21 2re 12267 . . . . . . . . . . 11 2 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ)
233, 4iccssred 13402 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2423sselda 3949 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
2524rehalfcld 12436 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ)
2625resincld 16118 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ)
2722, 26remulcld 11211 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ ℝ)
28 2cnd 12271 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
2926recnd 11209 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ)
30 2ne0 12297 . . . . . . . . . . 11 2 ≠ 0
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
327sselda 3949 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π))
33 eqcom 2737 . . . . . . . . . . . . . . . . 17 (𝑡 = 0 ↔ 0 = 𝑡)
3433biimpi 216 . . . . . . . . . . . . . . . 16 (𝑡 = 0 → 0 = 𝑡)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡)
36 simpl 482 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵))
3735, 36eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
3837adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
399ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
4038, 39pm2.65da 816 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0)
4140neqned 2933 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0)
42 fourierdlem44 46156 . . . . . . . . . . 11 ((𝑡 ∈ (-π[,]π) ∧ 𝑡 ≠ 0) → (sin‘(𝑡 / 2)) ≠ 0)
4332, 41, 42syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0)
4428, 29, 31, 43mulne0d 11837 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0)
45 eldifsn 4753 . . . . . . . . 9 ((2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2 · (sin‘(𝑡 / 2))) ≠ 0))
4627, 44, 45sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}))
4746, 18fmptd 7089 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
48 difss 4102 . . . . . . . . . 10 (ℝ ∖ {0}) ⊆ ℝ
49 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
5048, 49sstri 3959 . . . . . . . . 9 (ℝ ∖ {0}) ⊆ ℂ
5150a1i 11 . . . . . . . 8 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
5223, 49sstrdi 3962 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
53 2cnd 12271 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
54 ssid 3972 . . . . . . . . . . 11 ℂ ⊆ ℂ
5554a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5652, 53, 55constcncfg 45877 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ))
57 sincn 26361 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
5857a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5952, 55idcncfg 45878 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
60 eldifsn 4753 . . . . . . . . . . . . . 14 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
6128, 31, 60sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖ {0}))
62 eqid 2730 . . . . . . . . . . . . 13 (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2)
6361, 62fmptd 7089 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0}))
64 difssd 4103 . . . . . . . . . . . . 13 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
65 cncfcdm 24798 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6664, 56, 65syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6763, 66mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
6859, 67divcncf 25355 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6958, 68cncfmpt1f 24814 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7056, 69mulcncf 25353 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
71 cncfcdm 24798 . . . . . . . 8 (((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7251, 70, 71syl2anc 584 . . . . . . 7 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7347, 72mpbird 257 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
7418, 3, 4, 20, 73cncficcgt0 45893 . . . . 5 (𝜑 → ∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))))
75 reelprrecn 11167 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
7675a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ℝ ∈ {ℝ, ℂ})
771adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
782adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
79 elioore 13343 . . . . . . . . . . . . 13 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
8079adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
8178, 80readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8277, 81ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8312adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
8482, 83resubcld 11613 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
8584recnd 11209 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
86853ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8775a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
8882recnd 11209 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
895adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
902, 3readdcld 11210 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
9190rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
9291adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
932, 4readdcld 11210 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
9493rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
963adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
9796rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
984rexrd 11231 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
9998adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
100 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
101 ioogtlb 45500 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10297, 99, 100, 101syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10396, 80, 78, 102ltadd2dd 11340 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
1044adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
105 iooltub 45515 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10697, 99, 100, 105syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10780, 104, 78, 106ltadd2dd 11340 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
10892, 95, 81, 103, 107eliood 45503 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
10989, 108ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
110 eqid 2730 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
1111, 2, 3, 4, 110, 5fourierdlem28 46140 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
11283recnd 11209 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
113 0red 11184 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
114 iooretop 24660 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
115 tgioo4 24700 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
116114, 115eleqtri 2827 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
117116a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
11812recnd 11209 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
11987, 117, 118dvmptconst 45920 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
12087, 88, 109, 111, 112, 113, 119dvmptsub 25878 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
121109recnd 11209 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
122121subid1d 11529 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
123122mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
124120, 123eqtrd 2765 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1251243ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1261213ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
127 2cnd 12271 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
12879recnd 11209 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
129128halfcld 12434 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
130129sincld 16105 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
131127, 130mulcld 11201 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
132131adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
133 fourierdlem68.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
1341333ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝐸 ∈ ℝ)
135 1re 11181 . . . . . . . . 9 1 ∈ ℝ
13621, 135remulcli 11197 . . . . . . . 8 (2 · 1) ∈ ℝ
137136a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (2 · 1) ∈ ℝ)
138 1red 11182 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 1 ∈ ℝ)
139 fourierdlem68.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
140118abscld 15412 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
141139, 140readdcld 11210 . . . . . . . 8 (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ)
1421413ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
143 simpl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝜑)
144143, 108jca 511 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
145 eleq1 2817 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
146145anbi2d 630 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
147 fveq2 6861 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
148147fveq2d 6865 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
149148breq1d 5120 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
150146, 149imbi12d 344 . . . . . . . . . 10 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)))
151 fourierdlem68.fdvbd . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
152150, 151vtoclg 3523 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
15381, 144, 152sylc 65 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
1541533ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
155127, 130absmuld 15430 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) = ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))))
156 0le2 12295 . . . . . . . . . . . 12 0 ≤ 2
157 absid 15269 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
15821, 156, 157mp2an 692 . . . . . . . . . . 11 (abs‘2) = 2
159158oveq1i 7400 . . . . . . . . . 10 ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 · (abs‘(sin‘(𝑠 / 2))))
160130abscld 15412 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈ ℝ)
161 1red 11182 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ)
16221a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ)
163156a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2)
16479rehalfcld 12436 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ)
165 abssinbd 45300 . . . . . . . . . . . 12 ((𝑠 / 2) ∈ ℝ → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
166164, 165syl 17 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
167160, 161, 162, 163, 166lemul2ad 12130 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
168159, 167eqbrtrid 5145 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
169155, 168eqbrtrd 5132 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
170169adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
171 abscosbd 45284 . . . . . . . . 9 ((𝑠 / 2) ∈ ℝ → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
172100, 164, 1713syl 18 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
1731723ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
17485abscld 15412 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
17588abscld 15412 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ)
176112abscld 15412 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ)
177175, 176readdcld 11210 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ)
178139adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ)
179178, 176readdcld 11210 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
18088, 112abs2dif2d 15434 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)))
181 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
182181fveq2d 6865 . . . . . . . . . . . . . 14 (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠))))
183182breq1d 5120 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
184146, 183imbi12d 344 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)))
185 fourierdlem68.fbd . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
186184, 185vtoclg 3523 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
187108, 144, 186sylc 65 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)
188175, 178, 176, 187leadd1dd 11799 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶)))
189174, 177, 179, 180, 188letrd 11338 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
1901893ad2antl1 1186 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
19114simpri 485 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
192191a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
193129coscld 16106 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
194193adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
195 simp2 1137 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝑐 ∈ ℝ+)
196 oveq1 7397 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
197196fveq2d 6865 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
198197oveq2d 7406 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
199198fveq2d 6865 . . . . . . . . . . 11 (𝑡 = 𝑠 → (abs‘(2 · (sin‘(𝑡 / 2)))) = (abs‘(2 · (sin‘(𝑠 / 2)))))
200199breq2d 5122 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
201200cbvralvw 3216 . . . . . . . . 9 (∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
202 nfv 1914 . . . . . . . . . . 11 𝑠𝜑
203 nfra1 3262 . . . . . . . . . . 11 𝑠𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))
204202, 203nfan 1899 . . . . . . . . . 10 𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
205 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2066, 100sselid 3947 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
207206adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
208 rspa 3227 . . . . . . . . . . . 12 ((∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
209205, 207, 208syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
210209ex 412 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
211204, 210ralrimi 3236 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
212201, 211sylan2b 594 . . . . . . . 8 ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2132123adant2 1131 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
214 eqid 2730 . . . . . . 7 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
21576, 86, 125, 126, 132, 134, 137, 138, 142, 154, 170, 173, 190, 192, 194, 195, 213, 214dvdivbd 45928 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
216215rexlimdv3a 3139 . . . . 5 (𝜑 → (∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
21774, 216mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
218 nfcv 2892 . . . . . . . . 9 𝑠
219 nfcv 2892 . . . . . . . . 9 𝑠 D
220 nfmpt1 5209 . . . . . . . . . 10 𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
22113, 220nfcxfr 2890 . . . . . . . . 9 𝑠𝑂
222218, 219, 221nfov 7420 . . . . . . . 8 𝑠(ℝ D 𝑂)
223222nfdm 5918 . . . . . . 7 𝑠dom (ℝ D 𝑂)
224 nfcv 2892 . . . . . . 7 𝑠(𝐴(,)𝐵)
225223, 224raleqf 3331 . . . . . 6 (dom (ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
22617, 225syl 17 . . . . 5 (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
227226rexbidv 3158 . . . 4 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
228217, 227mpbird 257 . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
22913a1i 11 . . . . . . . 8 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
230229oveq2d 7406 . . . . . . 7 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
231230fveq1d 6863 . . . . . 6 (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
232231fveq2d 6865 . . . . 5 (𝜑 → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
233232breq1d 5120 . . . 4 (𝜑 → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
234233rexralbidv 3204 . . 3 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
235228, 234mpbird 257 . 2 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
23617, 235jca 511 1 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  wss 3917  {csn 4592  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,]cicc 13316  cexp 14033  abscabs 15207  sincsin 16036  cosccos 16037  πcpi 16039  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem80  46191
  Copyright terms: Public domain W3C validator