Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem68 Structured version   Visualization version   GIF version

Theorem fourierdlem68 43715
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem68.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem68.xre (𝜑𝑋 ∈ ℝ)
fourierdlem68.a (𝜑𝐴 ∈ ℝ)
fourierdlem68.b (𝜑𝐵 ∈ ℝ)
fourierdlem68.altb (𝜑𝐴 < 𝐵)
fourierdlem68.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem68.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem68.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem68.d (𝜑𝐷 ∈ ℝ)
fourierdlem68.fbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
fourierdlem68.e (𝜑𝐸 ∈ ℝ)
fourierdlem68.fdvbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
fourierdlem68.c (𝜑𝐶 ∈ ℝ)
fourierdlem68.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem68 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Distinct variable groups:   𝐴,𝑏,𝑠   𝑡,𝐴,𝑠   𝐵,𝑏,𝑠   𝑡,𝐵   𝐶,𝑏,𝑠   𝐷,𝑏,𝑠   𝑡,𝐷   𝐸,𝑏,𝑠   𝑡,𝐸   𝐹,𝑏,𝑠   𝑡,𝐹   𝑋,𝑏,𝑠   𝑡,𝑋   𝜑,𝑏,𝑠   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝑂(𝑡,𝑠,𝑏)

Proof of Theorem fourierdlem68
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem68.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem68.xre . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem68.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 fourierdlem68.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
5 fourierdlem68.fdv . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6 ioossicc 13165 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7 fourierdlem68.ab . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
86, 7sstrid 3932 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
9 fourierdlem68.n0 . . . . . . 7 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
106sseli 3917 . . . . . . 7 (0 ∈ (𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵))
119, 10nsyl 140 . . . . . 6 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
12 fourierdlem68.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
13 fourierdlem68.o . . . . . 6 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
141, 2, 3, 4, 5, 8, 11, 12, 13fourierdlem57 43704 . . . . 5 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
1514simpli 484 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
1615simpld 495 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
1716fdmd 6611 . 2 (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵))
18 eqid 2738 . . . . . 6 (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2))))
19 fourierdlem68.altb . . . . . . 7 (𝜑𝐴 < 𝐵)
203, 4, 19ltled 11123 . . . . . 6 (𝜑𝐴𝐵)
21 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ)
233, 4iccssred 13166 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2423sselda 3921 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
2524rehalfcld 12220 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ)
2625resincld 15852 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ)
2722, 26remulcld 11005 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ ℝ)
28 2cnd 12051 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
2926recnd 11003 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ)
30 2ne0 12077 . . . . . . . . . . 11 2 ≠ 0
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
327sselda 3921 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π))
33 eqcom 2745 . . . . . . . . . . . . . . . . 17 (𝑡 = 0 ↔ 0 = 𝑡)
3433biimpi 215 . . . . . . . . . . . . . . . 16 (𝑡 = 0 → 0 = 𝑡)
3534adantl 482 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡)
36 simpl 483 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵))
3735, 36eqeltrd 2839 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
3837adantll 711 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
399ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
4038, 39pm2.65da 814 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0)
4140neqned 2950 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0)
42 fourierdlem44 43692 . . . . . . . . . . 11 ((𝑡 ∈ (-π[,]π) ∧ 𝑡 ≠ 0) → (sin‘(𝑡 / 2)) ≠ 0)
4332, 41, 42syl2anc 584 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0)
4428, 29, 31, 43mulne0d 11627 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0)
45 eldifsn 4720 . . . . . . . . 9 ((2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2 · (sin‘(𝑡 / 2))) ≠ 0))
4627, 44, 45sylanbrc 583 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}))
4746, 18fmptd 6988 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
48 difss 4066 . . . . . . . . . 10 (ℝ ∖ {0}) ⊆ ℝ
49 ax-resscn 10928 . . . . . . . . . 10 ℝ ⊆ ℂ
5048, 49sstri 3930 . . . . . . . . 9 (ℝ ∖ {0}) ⊆ ℂ
5150a1i 11 . . . . . . . 8 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
5223, 49sstrdi 3933 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
53 2cnd 12051 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
54 ssid 3943 . . . . . . . . . . 11 ℂ ⊆ ℂ
5554a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5652, 53, 55constcncfg 43413 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ))
57 sincn 25603 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
5857a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5952, 55idcncfg 43414 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
60 eldifsn 4720 . . . . . . . . . . . . . 14 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
6128, 31, 60sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖ {0}))
62 eqid 2738 . . . . . . . . . . . . 13 (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2)
6361, 62fmptd 6988 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0}))
64 difssd 4067 . . . . . . . . . . . . 13 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
65 cncffvrn 24061 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6664, 56, 65syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6763, 66mpbird 256 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
6859, 67divcncf 24611 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6958, 68cncfmpt1f 24077 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7056, 69mulcncf 24610 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
71 cncffvrn 24061 . . . . . . . 8 (((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7251, 70, 71syl2anc 584 . . . . . . 7 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7347, 72mpbird 256 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
7418, 3, 4, 20, 73cncficcgt0 43429 . . . . 5 (𝜑 → ∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))))
75 reelprrecn 10963 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
7675a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ℝ ∈ {ℝ, ℂ})
771adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
782adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
79 elioore 13109 . . . . . . . . . . . . 13 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
8079adantl 482 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
8178, 80readdcld 11004 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8277, 81ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8312adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
8482, 83resubcld 11403 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
8584recnd 11003 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
86853ad2antl1 1184 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8775a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
8882recnd 11003 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
895adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
902, 3readdcld 11004 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
9190rexrd 11025 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
9291adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
932, 4readdcld 11004 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
9493rexrd 11025 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
9594adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
963adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
9796rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
984rexrd 11025 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
9998adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
100 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
101 ioogtlb 43033 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10297, 99, 100, 101syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10396, 80, 78, 102ltadd2dd 11134 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
1044adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
105 iooltub 43048 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10697, 99, 100, 105syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10780, 104, 78, 106ltadd2dd 11134 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
10892, 95, 81, 103, 107eliood 43036 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
10989, 108ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
110 eqid 2738 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
1111, 2, 3, 4, 110, 5fourierdlem28 43676 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
11283recnd 11003 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
113 0red 10978 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
114 iooretop 23929 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
115 eqid 2738 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
116115tgioo2 23966 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
117114, 116eleqtri 2837 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
11912recnd 11003 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
12087, 118, 119dvmptconst 43456 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
12187, 88, 109, 111, 112, 113, 120dvmptsub 25131 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
122109recnd 11003 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
123122subid1d 11321 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
124123mpteq2dva 5174 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
125121, 124eqtrd 2778 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1261253ad2ant1 1132 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1271223ad2antl1 1184 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
128 2cnd 12051 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
12979recnd 11003 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
130129halfcld 12218 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
131130sincld 15839 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
132128, 131mulcld 10995 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
133132adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
134 fourierdlem68.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
1351343ad2ant1 1132 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝐸 ∈ ℝ)
136 1re 10975 . . . . . . . . 9 1 ∈ ℝ
13721, 136remulcli 10991 . . . . . . . 8 (2 · 1) ∈ ℝ
138137a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (2 · 1) ∈ ℝ)
139 1red 10976 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 1 ∈ ℝ)
140 fourierdlem68.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
141119abscld 15148 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
142140, 141readdcld 11004 . . . . . . . 8 (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ)
1431423ad2ant1 1132 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
144 simpl 483 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝜑)
145144, 108jca 512 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
146 eleq1 2826 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
147146anbi2d 629 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
148 fveq2 6774 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
149148fveq2d 6778 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
150149breq1d 5084 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
151147, 150imbi12d 345 . . . . . . . . . 10 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)))
152 fourierdlem68.fdvbd . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
153151, 152vtoclg 3505 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
15481, 145, 153sylc 65 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
1551543ad2antl1 1184 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
156128, 131absmuld 15166 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) = ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))))
157 0le2 12075 . . . . . . . . . . . 12 0 ≤ 2
158 absid 15008 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
15921, 157, 158mp2an 689 . . . . . . . . . . 11 (abs‘2) = 2
160159oveq1i 7285 . . . . . . . . . 10 ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 · (abs‘(sin‘(𝑠 / 2))))
161131abscld 15148 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈ ℝ)
162 1red 10976 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ)
16321a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ)
164157a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2)
16579rehalfcld 12220 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ)
166 abssinbd 42834 . . . . . . . . . . . 12 ((𝑠 / 2) ∈ ℝ → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
167165, 166syl 17 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
168161, 162, 163, 164, 167lemul2ad 11915 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
169160, 168eqbrtrid 5109 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
170156, 169eqbrtrd 5096 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
171170adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
172 abscosbd 42817 . . . . . . . . 9 ((𝑠 / 2) ∈ ℝ → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
173100, 165, 1723syl 18 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
1741733ad2antl1 1184 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
17585abscld 15148 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
17688abscld 15148 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ)
177112abscld 15148 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ)
178176, 177readdcld 11004 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ)
179140adantr 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ)
180179, 177readdcld 11004 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
18188, 112abs2dif2d 15170 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)))
182 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
183182fveq2d 6778 . . . . . . . . . . . . . 14 (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠))))
184183breq1d 5084 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
185147, 184imbi12d 345 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)))
186 fourierdlem68.fbd . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
187185, 186vtoclg 3505 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
188108, 145, 187sylc 65 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)
189176, 179, 177, 188leadd1dd 11589 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶)))
190175, 178, 180, 181, 189letrd 11132 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
1911903ad2antl1 1184 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
19214simpri 486 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
193192a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
194130coscld 15840 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
195194adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
196 simp2 1136 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝑐 ∈ ℝ+)
197 oveq1 7282 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
198197fveq2d 6778 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
199198oveq2d 7291 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
200199fveq2d 6778 . . . . . . . . . . 11 (𝑡 = 𝑠 → (abs‘(2 · (sin‘(𝑡 / 2)))) = (abs‘(2 · (sin‘(𝑠 / 2)))))
201200breq2d 5086 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
202201cbvralvw 3383 . . . . . . . . 9 (∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
203 nfv 1917 . . . . . . . . . . 11 𝑠𝜑
204 nfra1 3144 . . . . . . . . . . 11 𝑠𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))
205203, 204nfan 1902 . . . . . . . . . 10 𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
206 simplr 766 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2076, 100sselid 3919 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
208207adantlr 712 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
209 rspa 3132 . . . . . . . . . . . 12 ((∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
210206, 208, 209syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
211210ex 413 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
212205, 211ralrimi 3141 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
213202, 212sylan2b 594 . . . . . . . 8 ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2142133adant2 1130 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
215 eqid 2738 . . . . . . 7 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
21676, 86, 126, 127, 133, 135, 138, 139, 143, 155, 171, 174, 191, 193, 195, 196, 214, 215dvdivbd 43464 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
217216rexlimdv3a 3215 . . . . 5 (𝜑 → (∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
21874, 217mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
219 nfcv 2907 . . . . . . . . 9 𝑠
220 nfcv 2907 . . . . . . . . 9 𝑠 D
221 nfmpt1 5182 . . . . . . . . . 10 𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
22213, 221nfcxfr 2905 . . . . . . . . 9 𝑠𝑂
223219, 220, 222nfov 7305 . . . . . . . 8 𝑠(ℝ D 𝑂)
224223nfdm 5860 . . . . . . 7 𝑠dom (ℝ D 𝑂)
225 nfcv 2907 . . . . . . 7 𝑠(𝐴(,)𝐵)
226224, 225raleqf 3332 . . . . . 6 (dom (ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
22717, 226syl 17 . . . . 5 (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
228227rexbidv 3226 . . . 4 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
229218, 228mpbird 256 . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
23013a1i 11 . . . . . . . 8 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
231230oveq2d 7291 . . . . . . 7 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
232231fveq1d 6776 . . . . . 6 (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
233232fveq2d 6778 . . . . 5 (𝜑 → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
234233breq1d 5084 . . . 4 (𝜑 → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
235234rexralbidv 3230 . . 3 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
236229, 235mpbird 256 . 2 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
23717, 236jca 512 1 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cdif 3884  wss 3887  {csn 4561  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  +crp 12730  (,)cioo 13079  [,]cicc 13082  cexp 13782  abscabs 14945  sincsin 15773  cosccos 15774  πcpi 15776  t crest 17131  TopOpenctopn 17132  topGenctg 17148  fldccnfld 20597  cnccncf 24039   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  fourierdlem80  43727
  Copyright terms: Public domain W3C validator