Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem68 Structured version   Visualization version   GIF version

Theorem fourierdlem68 45341
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem68.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem68.xre (𝜑𝑋 ∈ ℝ)
fourierdlem68.a (𝜑𝐴 ∈ ℝ)
fourierdlem68.b (𝜑𝐵 ∈ ℝ)
fourierdlem68.altb (𝜑𝐴 < 𝐵)
fourierdlem68.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem68.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem68.fdv (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
fourierdlem68.d (𝜑𝐷 ∈ ℝ)
fourierdlem68.fbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
fourierdlem68.e (𝜑𝐸 ∈ ℝ)
fourierdlem68.fdvbd ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
fourierdlem68.c (𝜑𝐶 ∈ ℝ)
fourierdlem68.o 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
Assertion
Ref Expression
fourierdlem68 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Distinct variable groups:   𝐴,𝑏,𝑠   𝑡,𝐴,𝑠   𝐵,𝑏,𝑠   𝑡,𝐵   𝐶,𝑏,𝑠   𝐷,𝑏,𝑠   𝑡,𝐷   𝐸,𝑏,𝑠   𝑡,𝐸   𝐹,𝑏,𝑠   𝑡,𝐹   𝑋,𝑏,𝑠   𝑡,𝑋   𝜑,𝑏,𝑠   𝜑,𝑡
Allowed substitution hints:   𝐶(𝑡)   𝑂(𝑡,𝑠,𝑏)

Proof of Theorem fourierdlem68
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem68.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem68.xre . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem68.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
4 fourierdlem68.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
5 fourierdlem68.fdv . . . . . 6 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6 ioossicc 13406 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7 fourierdlem68.ab . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
86, 7sstrid 3985 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ (-π[,]π))
9 fourierdlem68.n0 . . . . . . 7 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
106sseli 3970 . . . . . . 7 (0 ∈ (𝐴(,)𝐵) → 0 ∈ (𝐴[,]𝐵))
119, 10nsyl 140 . . . . . 6 (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵))
12 fourierdlem68.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
13 fourierdlem68.o . . . . . 6 𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
141, 2, 3, 4, 5, 8, 11, 12, 13fourierdlem57 45330 . . . . 5 ((𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
1514simpli 483 . . . 4 (𝜑 → ((ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ ∧ (ℝ D 𝑂) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
1615simpld 494 . . 3 (𝜑 → (ℝ D 𝑂):(𝐴(,)𝐵)⟶ℝ)
1716fdmd 6718 . 2 (𝜑 → dom (ℝ D 𝑂) = (𝐴(,)𝐵))
18 eqid 2724 . . . . . 6 (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2))))
19 fourierdlem68.altb . . . . . . 7 (𝜑𝐴 < 𝐵)
203, 4, 19ltled 11358 . . . . . 6 (𝜑𝐴𝐵)
21 2re 12282 . . . . . . . . . . 11 2 ∈ ℝ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℝ)
233, 4iccssred 13407 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
2423sselda 3974 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ℝ)
2524rehalfcld 12455 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 / 2) ∈ ℝ)
2625resincld 16082 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℝ)
2722, 26remulcld 11240 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ ℝ)
28 2cnd 12286 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
2926recnd 11238 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ∈ ℂ)
30 2ne0 12312 . . . . . . . . . . 11 2 ≠ 0
3130a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
327sselda 3974 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (-π[,]π))
33 eqcom 2731 . . . . . . . . . . . . . . . . 17 (𝑡 = 0 ↔ 0 = 𝑡)
3433biimpi 215 . . . . . . . . . . . . . . . 16 (𝑡 = 0 → 0 = 𝑡)
3534adantl 481 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 = 𝑡)
36 simpl 482 . . . . . . . . . . . . . . 15 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 𝑡 ∈ (𝐴[,]𝐵))
3735, 36eqeltrd 2825 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐴[,]𝐵) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
3837adantll 711 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → 0 ∈ (𝐴[,]𝐵))
399ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ 𝑡 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
4038, 39pm2.65da 814 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → ¬ 𝑡 = 0)
4140neqned 2939 . . . . . . . . . . 11 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ≠ 0)
42 fourierdlem44 45318 . . . . . . . . . . 11 ((𝑡 ∈ (-π[,]π) ∧ 𝑡 ≠ 0) → (sin‘(𝑡 / 2)) ≠ 0)
4332, 41, 42syl2anc 583 . . . . . . . . . 10 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (sin‘(𝑡 / 2)) ≠ 0)
4428, 29, 31, 43mulne0d 11862 . . . . . . . . 9 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ≠ 0)
45 eldifsn 4782 . . . . . . . . 9 ((2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}) ↔ ((2 · (sin‘(𝑡 / 2))) ∈ ℝ ∧ (2 · (sin‘(𝑡 / 2))) ≠ 0))
4627, 44, 45sylanbrc 582 . . . . . . . 8 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑡 / 2))) ∈ (ℝ ∖ {0}))
4746, 18fmptd 7105 . . . . . . 7 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0}))
48 difss 4123 . . . . . . . . . 10 (ℝ ∖ {0}) ⊆ ℝ
49 ax-resscn 11162 . . . . . . . . . 10 ℝ ⊆ ℂ
5048, 49sstri 3983 . . . . . . . . 9 (ℝ ∖ {0}) ⊆ ℂ
5150a1i 11 . . . . . . . 8 (𝜑 → (ℝ ∖ {0}) ⊆ ℂ)
5223, 49sstrdi 3986 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
53 2cnd 12286 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
54 ssid 3996 . . . . . . . . . . 11 ℂ ⊆ ℂ
5554a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
5652, 53, 55constcncfg 45039 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ))
57 sincn 26286 . . . . . . . . . . 11 sin ∈ (ℂ–cn→ℂ)
5857a1i 11 . . . . . . . . . 10 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5952, 55idcncfg 45040 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 𝑡) ∈ ((𝐴[,]𝐵)–cn→ℂ))
60 eldifsn 4782 . . . . . . . . . . . . . 14 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
6128, 31, 60sylanbrc 582 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 2 ∈ (ℂ ∖ {0}))
62 eqid 2724 . . . . . . . . . . . . 13 (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) = (𝑡 ∈ (𝐴[,]𝐵) ↦ 2)
6361, 62fmptd 7105 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0}))
64 difssd 4124 . . . . . . . . . . . . 13 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
65 cncfcdm 24728 . . . . . . . . . . . . 13 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6664, 56, 65syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ 2):(𝐴[,]𝐵)⟶(ℂ ∖ {0})))
6763, 66mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
6859, 67divcncf 25286 . . . . . . . . . 10 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (𝑡 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6958, 68cncfmpt1f 24744 . . . . . . . . 9 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑡 / 2))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7056, 69mulcncf 25284 . . . . . . . 8 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
71 cncfcdm 24728 . . . . . . . 8 (((ℝ ∖ {0}) ⊆ ℂ ∧ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7251, 70, 71syl2anc 583 . . . . . . 7 (𝜑 → ((𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})) ↔ (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))):(𝐴[,]𝐵)⟶(ℝ ∖ {0})))
7347, 72mpbird 257 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴[,]𝐵) ↦ (2 · (sin‘(𝑡 / 2)))) ∈ ((𝐴[,]𝐵)–cn→(ℝ ∖ {0})))
7418, 3, 4, 20, 73cncficcgt0 45055 . . . . 5 (𝜑 → ∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))))
75 reelprrecn 11197 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
7675a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ℝ ∈ {ℝ, ℂ})
771adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐹:ℝ⟶ℝ)
782adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
79 elioore 13350 . . . . . . . . . . . . 13 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
8079adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
8178, 80readdcld 11239 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8277, 81ffvelcdmd 7077 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8312adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℝ)
8482, 83resubcld 11638 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℝ)
8584recnd 11238 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
86853ad2antl1 1182 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
8775a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
8882recnd 11238 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
895adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))):((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
902, 3readdcld 11239 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
9190rexrd 11260 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
9291adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
932, 4readdcld 11239 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
9493rexrd 11260 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
9594adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
963adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
9796rexrd 11260 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
984rexrd 11260 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ*)
9998adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
100 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
101 ioogtlb 44659 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10297, 99, 100, 101syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
10396, 80, 78, 102ltadd2dd 11369 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
1044adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
105 iooltub 44674 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10697, 99, 100, 105syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
10780, 104, 78, 106ltadd2dd 11369 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
10892, 95, 81, 103, 107eliood 44662 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
10989, 108ffvelcdmd 7077 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℝ)
110 eqid 2724 . . . . . . . . . . 11 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
1111, 2, 3, 4, 110, 5fourierdlem28 45302 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
11283recnd 11238 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ ℂ)
113 0red 11213 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
114 iooretop 24592 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
115 eqid 2724 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
116115tgioo2 24629 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
117114, 116eleqtri 2823 . . . . . . . . . . . 12 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
118117a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
11912recnd 11238 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
12087, 118, 119dvmptconst 45082 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝐶)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
12187, 88, 109, 111, 112, 113, 120dvmptsub 25809 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)))
122109recnd 11238 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
123122subid1d 11556 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
124123mpteq2dva 5238 . . . . . . . . 9 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) − 0)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
125121, 124eqtrd 2764 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1261253ad2ant1 1130 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
1271223ad2antl1 1182 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)) ∈ ℂ)
128 2cnd 12286 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℂ)
12979recnd 11238 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℂ)
130129halfcld 12453 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℂ)
131130sincld 16069 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (sin‘(𝑠 / 2)) ∈ ℂ)
132128, 131mulcld 11230 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
133132adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
134 fourierdlem68.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
1351343ad2ant1 1130 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝐸 ∈ ℝ)
136 1re 11210 . . . . . . . . 9 1 ∈ ℝ
13721, 136remulcli 11226 . . . . . . . 8 (2 · 1) ∈ ℝ
138137a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (2 · 1) ∈ ℝ)
139 1red 11211 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 1 ∈ ℝ)
140 fourierdlem68.d . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
141119abscld 15379 . . . . . . . . 9 (𝜑 → (abs‘𝐶) ∈ ℝ)
142140, 141readdcld 11239 . . . . . . . 8 (𝜑 → (𝐷 + (abs‘𝐶)) ∈ ℝ)
1431423ad2ant1 1130 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
144 simpl 482 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝜑)
145144, 108jca 511 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
146 eleq1 2813 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↔ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
147146anbi2d 628 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) ↔ (𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
148 fveq2 6881 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠)))
149148fveq2d 6885 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))))
150149breq1d 5148 . . . . . . . . . . 11 (𝑡 = (𝑋 + 𝑠) → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
151147, 150imbi12d 344 . . . . . . . . . 10 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)))
152 fourierdlem68.fdvbd . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘𝑡)) ≤ 𝐸)
153151, 152vtoclg 3535 . . . . . . . . 9 ((𝑋 + 𝑠) ∈ ℝ → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸))
15481, 145, 153sylc 65 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
1551543ad2antl1 1182 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))‘(𝑋 + 𝑠))) ≤ 𝐸)
156128, 131absmuld 15397 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) = ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))))
157 0le2 12310 . . . . . . . . . . . 12 0 ≤ 2
158 absid 15239 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
15921, 157, 158mp2an 689 . . . . . . . . . . 11 (abs‘2) = 2
160159oveq1i 7411 . . . . . . . . . 10 ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) = (2 · (abs‘(sin‘(𝑠 / 2))))
161131abscld 15379 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ∈ ℝ)
162 1red 11211 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 1 ∈ ℝ)
16321a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 2 ∈ ℝ)
164157a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → 0 ≤ 2)
16579rehalfcld 12455 . . . . . . . . . . . 12 (𝑠 ∈ (𝐴(,)𝐵) → (𝑠 / 2) ∈ ℝ)
166 abssinbd 44456 . . . . . . . . . . . 12 ((𝑠 / 2) ∈ ℝ → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
167165, 166syl 17 . . . . . . . . . . 11 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(sin‘(𝑠 / 2))) ≤ 1)
168161, 162, 163, 164, 167lemul2ad 12150 . . . . . . . . . 10 (𝑠 ∈ (𝐴(,)𝐵) → (2 · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
169160, 168eqbrtrid 5173 . . . . . . . . 9 (𝑠 ∈ (𝐴(,)𝐵) → ((abs‘2) · (abs‘(sin‘(𝑠 / 2)))) ≤ (2 · 1))
170156, 169eqbrtrd 5160 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
171170adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(2 · (sin‘(𝑠 / 2)))) ≤ (2 · 1))
172 abscosbd 44439 . . . . . . . . 9 ((𝑠 / 2) ∈ ℝ → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
173100, 165, 1723syl 18 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
1741733ad2antl1 1182 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑠 / 2))) ≤ 1)
17585abscld 15379 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ∈ ℝ)
17688abscld 15379 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ∈ ℝ)
177112abscld 15379 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘𝐶) ∈ ℝ)
178176, 177readdcld 11239 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ∈ ℝ)
179140adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℝ)
180179, 177readdcld 11239 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷 + (abs‘𝐶)) ∈ ℝ)
18188, 112abs2dif2d 15401 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)))
182 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑡 = (𝑋 + 𝑠) → (𝐹𝑡) = (𝐹‘(𝑋 + 𝑠)))
183182fveq2d 6885 . . . . . . . . . . . . . 14 (𝑡 = (𝑋 + 𝑠) → (abs‘(𝐹𝑡)) = (abs‘(𝐹‘(𝑋 + 𝑠))))
184183breq1d 5148 . . . . . . . . . . . . 13 (𝑡 = (𝑋 + 𝑠) → ((abs‘(𝐹𝑡)) ≤ 𝐷 ↔ (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
185147, 184imbi12d 344 . . . . . . . . . . . 12 (𝑡 = (𝑋 + 𝑠) → (((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷) ↔ ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)))
186 fourierdlem68.fbd . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹𝑡)) ≤ 𝐷)
187185, 186vtoclg 3535 . . . . . . . . . . 11 ((𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → ((𝜑 ∧ (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷))
188108, 145, 187sylc 65 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘(𝑋 + 𝑠))) ≤ 𝐷)
189176, 179, 177, 188leadd1dd 11824 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹‘(𝑋 + 𝑠))) + (abs‘𝐶)) ≤ (𝐷 + (abs‘𝐶)))
190175, 178, 180, 181, 189letrd 11367 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
1911903ad2antl1 1182 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹‘(𝑋 + 𝑠)) − 𝐶)) ≤ (𝐷 + (abs‘𝐶)))
19214simpri 485 . . . . . . . 8 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2)))
193192a1i 11 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑠 / 2))))
194130coscld 16070 . . . . . . . 8 (𝑠 ∈ (𝐴(,)𝐵) → (cos‘(𝑠 / 2)) ∈ ℂ)
195194adantl 481 . . . . . . 7 (((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑠 / 2)) ∈ ℂ)
196 simp2 1134 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → 𝑐 ∈ ℝ+)
197 oveq1 7408 . . . . . . . . . . . . . 14 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
198197fveq2d 6885 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
199198oveq2d 7417 . . . . . . . . . . . 12 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
200199fveq2d 6885 . . . . . . . . . . 11 (𝑡 = 𝑠 → (abs‘(2 · (sin‘(𝑡 / 2)))) = (abs‘(2 · (sin‘(𝑠 / 2)))))
201200breq2d 5150 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
202201cbvralvw 3226 . . . . . . . . 9 (∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) ↔ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
203 nfv 1909 . . . . . . . . . . 11 𝑠𝜑
204 nfra1 3273 . . . . . . . . . . 11 𝑠𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))
205203, 204nfan 1894 . . . . . . . . . 10 𝑠(𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
206 simplr 766 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2076, 100sselid 3972 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
208207adantlr 712 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
209 rspa 3237 . . . . . . . . . . . 12 ((∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
210206, 208, 209syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
211210ex 412 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → (𝑠 ∈ (𝐴(,)𝐵) → 𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))))
212205, 211ralrimi 3246 . . . . . . . . 9 ((𝜑 ∧ ∀𝑠 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
213202, 212sylan2b 593 . . . . . . . 8 ((𝜑 ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
2142133adant2 1128 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∀𝑠 ∈ (𝐴(,)𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑠 / 2)))))
215 eqid 2724 . . . . . . 7 (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
21676, 86, 126, 127, 133, 135, 138, 139, 143, 155, 171, 174, 191, 193, 195, 196, 214, 215dvdivbd 45090 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2))))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
217216rexlimdv3a 3151 . . . . 5 (𝜑 → (∃𝑐 ∈ ℝ+𝑡 ∈ (𝐴[,]𝐵)𝑐 ≤ (abs‘(2 · (sin‘(𝑡 / 2)))) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
21874, 217mpd 15 . . . 4 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
219 nfcv 2895 . . . . . . . . 9 𝑠
220 nfcv 2895 . . . . . . . . 9 𝑠 D
221 nfmpt1 5246 . . . . . . . . . 10 𝑠(𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
22213, 221nfcxfr 2893 . . . . . . . . 9 𝑠𝑂
223219, 220, 222nfov 7431 . . . . . . . 8 𝑠(ℝ D 𝑂)
224223nfdm 5940 . . . . . . 7 𝑠dom (ℝ D 𝑂)
225 nfcv 2895 . . . . . . 7 𝑠(𝐴(,)𝐵)
226224, 225raleqf 3341 . . . . . 6 (dom (ℝ D 𝑂) = (𝐴(,)𝐵) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
22717, 226syl 17 . . . . 5 (𝜑 → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
228227rexbidv 3170 . . . 4 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ (𝐴(,)𝐵)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
229218, 228mpbird 257 . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
23013a1i 11 . . . . . . . 8 (𝜑𝑂 = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
231230oveq2d 7417 . . . . . . 7 (𝜑 → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))))
232231fveq1d 6883 . . . . . 6 (𝜑 → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
233232fveq2d 6885 . . . . 5 (𝜑 → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
234233breq1d 5148 . . . 4 (𝜑 → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
235234rexralbidv 3212 . . 3 (𝜑 → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
236229, 235mpbird 257 . 2 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
23717, 236jca 511 1 (𝜑 → (dom (ℝ D 𝑂) = (𝐴(,)𝐵) ∧ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  cdif 3937  wss 3940  {csn 4620  {cpr 4622   class class class wbr 5138  cmpt 5221  dom cdm 5666  ran crn 5667  cres 5668  wf 6529  cfv 6533  (class class class)co 7401  cc 11103  cr 11104  0cc0 11105  1c1 11106   + caddc 11108   · cmul 11110  *cxr 11243   < clt 11244  cle 11245  cmin 11440  -cneg 11441   / cdiv 11867  2c2 12263  +crp 12970  (,)cioo 13320  [,]cicc 13323  cexp 14023  abscabs 15177  sincsin 16003  cosccos 16004  πcpi 16006  t crest 17362  TopOpenctopn 17363  topGenctg 17379  fldccnfld 21223  cnccncf 24706   D cdv 25702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-submnd 18701  df-mulg 18983  df-cntz 19218  df-cmn 19687  df-psmet 21215  df-xmet 21216  df-met 21217  df-bl 21218  df-mopn 21219  df-fbas 21220  df-fg 21221  df-cnfld 21224  df-top 22706  df-topon 22723  df-topsp 22745  df-bases 22759  df-cld 22833  df-ntr 22834  df-cls 22835  df-nei 22912  df-lp 22950  df-perf 22951  df-cn 23041  df-cnp 23042  df-t1 23128  df-haus 23129  df-cmp 23201  df-tx 23376  df-hmeo 23569  df-fil 23660  df-fm 23752  df-flim 23753  df-flf 23754  df-xms 24136  df-ms 24137  df-tms 24138  df-cncf 24708  df-limc 25705  df-dv 25706
This theorem is referenced by:  fourierdlem80  45353
  Copyright terms: Public domain W3C validator