Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem103 Structured version   Visualization version   GIF version

Theorem fourierdlem103 46207
Description: The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem103.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem103.xre (𝜑𝑋 ∈ ℝ)
fourierdlem103.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem103.m (𝜑𝑀 ∈ ℕ)
fourierdlem103.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem103.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem103.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem103.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem103.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem103.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem103.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem103.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem103.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem103.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem103.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem103.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem103.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem103.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem103.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
fourierdlem103.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem103.o 𝑂 = (𝑈 ↾ (-π[,]𝑑))
fourierdlem103.t 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
fourierdlem103.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem103.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem103.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem103.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem103.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem103 (𝜑𝑍 ⇝ (𝑊 / 2))
Distinct variable groups:   𝜒,𝑠   𝑌,𝑠   𝜑,𝑠   𝑅,𝑙,𝑠,𝑡   𝑒,𝑛,𝜑   𝑘,𝑊,𝑚,𝑠   𝑈,𝑘,𝑛   𝑘,𝑀   𝑈,𝑑,𝑙,𝑠   𝑊,𝑙,𝑡   𝑚,𝑛,𝜑   𝐷,𝑖,𝑚,𝑠   𝑚,𝑀,𝑝   𝐾,𝑠   𝜑,𝑑   𝑘,𝑋,𝑚   𝑋,𝑝   𝐿,𝑙,𝑠,𝑡   𝑖,𝑉,𝑝   𝑄,𝑝   𝑘,𝑉,𝑠,𝑡   𝑇,𝑓   𝑒,𝑂,𝑙   𝑤,𝐹,𝑧,𝑖   𝐹,𝑙,𝑡,𝑖   𝑒,𝑑,𝑠   𝑘,𝐹,𝑚,𝑠   𝑘,𝑂,𝑠,𝑡   𝑖,𝑀,𝑡   𝑡,𝑄   𝑓,𝑁   𝑡,𝑑,𝑤,𝑧,𝜑   𝑖,𝑊,𝑛,𝑠   𝑤,𝑁,𝑧   𝑄,𝑖   𝑀,𝑙   𝑡,𝑁   𝑆,𝑠   𝑛,𝐸   𝑖,𝑋,𝑙   𝑓,𝑑,𝜑   𝐵,𝑠   𝐴,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝑖,𝐺,𝑘   𝑒,𝐺,𝑠   𝑖,𝐻   𝑛,𝑍   𝑖,𝑑,𝑘,𝜑,𝑙   𝑀,𝑠   𝑡,𝐺   𝑒,𝑁,𝑘   𝑖,𝑁,𝑙,𝑠   𝑤,𝑊,𝑧   𝑋,𝑠,𝑡,𝑤,𝑧   𝑚,𝑁   𝐻,𝑠   𝑘,𝐽,𝑡,𝑤,𝑧   𝑚,𝐽,𝑠   𝐽,𝑙   𝑄,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑓,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑒,𝑓,𝑝,𝑑)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem103
Dummy variables 𝑥 𝑦 𝑏 𝑐 𝑢 𝑟 𝑣 𝑗 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12564 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1914 . . . . 5 𝑛𝜑
4 nfmpt1 5206 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
5 nfmpt1 5206 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem103.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5206 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2889 . . . . 5 𝑛𝐸
9 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
10 pire 26366 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
1110renegcli 11483 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ)
13 elioore 13336 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (-π(,)0) → 𝑑 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ ℝ)
15 fourierdlem103.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
16 fourierdlem103.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
17 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1915, 18fssresd 6727 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
20 ioosscn 13369 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
22 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 pnfxr 11228 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2516ltpnfd 13081 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2622, 24, 16, 25lptioo1cn 45644 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
27 fourierdlem103.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2819, 21, 26, 27limcrecl 45627 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
29 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3115, 30fssresd 6727 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
32 ioosscn 13369 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
34 mnfxr 11231 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3616mnfltd 13084 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3722, 35, 16, 36lptioo2cn 45643 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
38 fourierdlem103.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3931, 33, 37, 38limcrecl 45627 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
40 fourierdlem103.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
41 fourierdlem103.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
42 fourierdlem103.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4315, 16, 28, 39, 40, 41, 42fourierdlem55 46159 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
44 ax-resscn 11125 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4544a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4643, 45fssd 6705 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℂ)
4811a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ∈ ℝ)
4910a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → π ∈ ℝ)
5048leidd 11744 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ≤ -π)
51 0red 11177 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 ∈ ℝ)
5211rexri 11232 . . . . . . . . . . . . . . . . . . . . . 22 -π ∈ ℝ*
53 0xr 11221 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
54 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . 22 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
5552, 53, 54mp3an12 1453 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 𝑑 < 0)
56 pipos 26368 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 < π)
5813, 51, 49, 55, 57lttrd 11335 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (-π(,)0) → 𝑑 < π)
5913, 49, 58ltled 11322 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → 𝑑 ≤ π)
60 iccss 13375 . . . . . . . . . . . . . . . . . . 19 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 𝑑 ≤ π)) → (-π[,]𝑑) ⊆ (-π[,]π))
6148, 49, 50, 59, 60syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (-π(,)0) → (-π[,]𝑑) ⊆ (-π[,]π))
6261adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ (-π[,]π))
6347, 62fssresd 6727 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ)
64 fourierdlem103.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (-π[,]𝑑))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑈 ↾ (-π[,]𝑑)))
6665feq1d 6670 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑂:(-π[,]𝑑)⟶ℂ ↔ (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ))
6763, 66mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂:(-π[,]𝑑)⟶ℂ)
68 fourierdlem103.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝑇) − 1)
6911elexi 3470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -π ∈ V
7069prid1 4726 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ {-π, 𝑑}
71 elun1 4145 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π ∈ {-π, 𝑑} → -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
73 fourierdlem103.t . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
7472, 73eleqtrri 2827 . . . . . . . . . . . . . . . . . . . . . . 23 -π ∈ 𝑇
7574ne0ii 4307 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ≠ ∅)
77 prfi 9274 . . . . . . . . . . . . . . . . . . . . . . . . 25 {-π, 𝑑} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {-π, 𝑑} ∈ Fin)
79 fzfi 13937 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0...𝑀) ∈ Fin
80 fourierdlem103.q . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 45165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝑄 ∈ Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 9213 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
86 unfi 9135 . . . . . . . . . . . . . . . . . . . . . . . 24 (({-π, 𝑑} ∈ Fin ∧ (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8873, 87eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ Fin)
89 hashnncl 14331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9176, 90mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝑇) ∈ ℕ)
92 nnm1nn0 12483 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9468, 93eqeltrid 2832 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ0)
96 0red 11177 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ)
97 1red 11175 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ∈ ℝ)
9895nn0red 12504 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
99 0lt1 11700 . . . . . . . . . . . . . . . . . . . 20 0 < 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 1)
101 2re 12260 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ∈ ℝ)
10391nnred 12201 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝑇) ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘𝑇) ∈ ℝ)
105 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → -π < 𝑑)
10652, 53, 105mp3an12 1453 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (-π(,)0) → -π < 𝑑)
10748, 106ltned 11310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (-π(,)0) → -π ≠ 𝑑)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≠ 𝑑)
109 hashprg 14360 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
11012, 14, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
111108, 110mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) = 2)
112111eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 2 = (♯‘{-π, 𝑑}))
11388adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ∈ Fin)
114 ssun1 4141 . . . . . . . . . . . . . . . . . . . . . . . 24 {-π, 𝑑} ⊆ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
115114, 73sseqtrri 3996 . . . . . . . . . . . . . . . . . . . . . . 23 {-π, 𝑑} ⊆ 𝑇
116 hashssle 45296 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 ∈ Fin ∧ {-π, 𝑑} ⊆ 𝑇) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
117113, 115, 116sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
118112, 117eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ≤ (♯‘𝑇))
119102, 104, 97, 118lesub1dd 11794 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
120 1e2m1 12308 . . . . . . . . . . . . . . . . . . . 20 1 = (2 − 1)
121119, 120, 683brtr4g 5141 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ≤ 𝑁)
12296, 97, 98, 100, 121ltletrd 11334 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 𝑁)
123122gt0ne0d 11742 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ≠ 0)
12495, 123jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
125 elnnne0 12456 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
126124, 125sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ)
127 fourierdlem103.j . . . . . . . . . . . . . . . . . 18 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12850adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ -π)
12948, 13, 106ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (-π(,)0) → -π ≤ 𝑑)
130129adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ 𝑑)
13112, 14, 12, 128, 130eliccd 45502 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ (-π[,]𝑑))
13214leidd 11744 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑑)
13312, 14, 14, 130, 132eliccd 45502 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ (-π[,]𝑑))
134131, 133jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)))
135 vex 3451 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
13669, 135prss 4784 . . . . . . . . . . . . . . . . . . . . 21 ((-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)) ↔ {-π, 𝑑} ⊆ (-π[,]𝑑))
137134, 136sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ (-π[,]𝑑))
138 inss2 4201 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑))
140 ioossicc 13394 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)𝑑) ⊆ (-π[,]𝑑)
141139, 140sstrdi 3959 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π[,]𝑑))
142137, 141unssd 4155 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ (-π[,]𝑑))
14373, 142eqsstrid 3985 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ (-π[,]𝑑))
14474a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ 𝑇)
145135prid2 4727 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ {-π, 𝑑}
146 elun1 4145 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ {-π, 𝑑} → 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
148147, 73eleqtrri 2827 . . . . . . . . . . . . . . . . . . 19 𝑑𝑇
149148a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑇)
150113, 68, 127, 12, 14, 143, 144, 149fourierdlem52 46156 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → ((𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π) ∧ (𝐽𝑁) = 𝑑))
151150simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π))
152151simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
153151simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽‘0) = -π)
154150simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽𝑁) = 𝑑)
155 elfzoelz 13620 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
156155zred 12638 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
157156adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
158157ltp1d 12113 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15948, 13jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (-π(,)0) → (-π ∈ ℝ ∧ 𝑑 ∈ ℝ))
16069, 135prss 4784 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) ↔ {-π, 𝑑} ⊆ ℝ)
161159, 160sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (-π(,)0) → {-π, 𝑑} ⊆ ℝ)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ ℝ)
163 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)𝑑) ⊆ ℝ
164138, 163sstri 3956 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ)
166162, 165unssd 4155 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ ℝ)
16773, 166eqsstrid 3985 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ ℝ)
168113, 167, 127, 68fourierdlem36 46141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
169168adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
170 elfzofz 13636 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
171170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
172 fzofzp1 13725 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
173172adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
174 isorel 7301 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
175169, 171, 173, 174syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
176158, 175mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17743adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
178177, 62feqresmpt 6930 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)) = (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)))
17962sselda 3946 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
18015, 16, 28, 39, 40fourierdlem9 46114 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
181180ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐻:(-π[,]π)⟶ℝ)
182181, 179ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) ∈ ℝ)
18341fourierdlem43 46148 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐾:(-π[,]π)⟶ℝ)
185184, 179ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) ∈ ℝ)
186182, 185remulcld 11204 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18742fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
188179, 186, 187syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
18911a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
19013adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ)
191 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]𝑑))
192 eliccre 45503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
193189, 190, 191, 192syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
194 0red 11177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 0 ∈ ℝ)
19552a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ*)
196190rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ*)
197 iccleub 13362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
198195, 196, 191, 197syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
19955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < 0)
200193, 190, 194, 198, 199lelttrd 11332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < 0)
201193, 200ltned 11310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
202201adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
203202neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
204203iffalsed 4499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
205193, 194, 200ltnsymd 11323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
206205adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
207206iffalsed 4499 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
208207oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
209208oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
210204, 209eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
21115ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐹:ℝ⟶ℝ)
21216ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑋 ∈ ℝ)
213 iccssre 13390 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21411, 10, 213mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
215214, 179sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
216212, 215readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑋 + 𝑠) ∈ ℝ)
217211, 216ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21839ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑊 ∈ ℝ)
219217, 218resubcld 11606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℝ)
220219, 215, 202redivcld 12010 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ ℝ)
221210, 220eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
22240fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
223179, 221, 222syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
224223, 204, 2093eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22510a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → π ∈ ℝ)
226225renegcld 11605 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
227 iccgelb 13363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
228195, 196, 191, 227syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
22958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < π)
230193, 190, 225, 198, 229lelttrd 11332 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < π)
231193, 225, 230ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≤ π)
232226, 225, 193, 228, 231eliccd 45502 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
233201neneqd 2930 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
234233iffalsed 4499 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
235101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℝ)
236193rehalfcld 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℝ)
237236resincld 16111 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℝ)
238235, 237remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
239 2cn 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℂ
240239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
241193recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
242241halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
243242sincld 16098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
244 2ne0 12290 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
245244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ≠ 0)
246 fourierdlem44 46149 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
247232, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ≠ 0)
248240, 243, 245, 247mulne0d 11830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
249193, 238, 248redivcld 12010 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
250234, 249eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
25141fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252232, 250, 251syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
253252adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254224, 253oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255203iffalsed 4499 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
256255oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
257188, 254, 2563eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
258257mpteq2dva 5200 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25965, 178, 2583eqtrd 2768 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
260259adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
261260reseq1d 5949 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
26215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
26316adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
264 fourierdlem103.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
265 fourierdlem103.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
266265adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑀 ∈ ℕ)
267 fourierdlem103.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
268267adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑉 ∈ (𝑃𝑀))
269 fourierdlem103.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
270269adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
271 fourierdlem103.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
272271adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
273 fourierdlem103.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
274273adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
275106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π < 𝑑)
27652a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ*)
27753a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ*)
27855adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
279276, 14, 277, 278gtnelicc 45498 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ¬ 0 ∈ (-π[,]𝑑))
28039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑊 ∈ ℝ)
281 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
282 eqid 2729 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
283 eqid 2729 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
284 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
285 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
286285fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
287284, 286oveq12d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
288287sseq2d 3979 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
289288cbvriotavw 7354 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
290262, 263, 264, 266, 268, 270, 272, 274, 12, 14, 275, 62, 279, 280, 281, 80, 73, 68, 127, 282, 283, 289fourierdlem86 46190 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
291290simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
292261, 291eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
293290simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))))
294293simpld 494 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295260eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
296295reseq1d 5949 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
297296oveq1d 7402 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
298294, 297eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
299293simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
300296oveq1d 7402 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
301299, 300eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
302 eqid 2729 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
30367adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(-π[,]𝑑)⟶ℂ)
30411a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ∈ ℝ)
30514ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
306 elioore 13336 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
307306adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30862, 214sstrdi 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ ℝ)
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ ℝ)
310152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
311310, 171ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (-π[,]𝑑))
312309, 311sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
313312adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31452a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
31514adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
316315rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
317 iccgelb 13363 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽𝑘) ∈ (-π[,]𝑑)) → -π ≤ (𝐽𝑘))
318314, 316, 311, 317syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ≤ (𝐽𝑘))
319318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ (𝐽𝑘))
320313rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
321310, 173ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑))
322309, 321sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
323322rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
324323adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
325 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
326 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
327320, 324, 325, 326syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
328304, 313, 307, 319, 327lelttrd 11332 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π < 𝑠)
329304, 307, 328ltled 11322 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ 𝑠)
330322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
331 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
332320, 324, 325, 331syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
333 iccleub 13362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
334314, 316, 321, 333syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
335334adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
336307, 330, 305, 332, 335ltletrd 11334 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < 𝑑)
337307, 305, 336ltled 11322 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠𝑑)
338304, 305, 307, 329, 337eliccd 45502 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (-π[,]𝑑))
339338ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
340 dfss3 3935 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
341339, 340sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
342303, 341feqresmpt 6930 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
343 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
344 simpllr 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (-π(,)0))
34564fveq1i 6859 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠)
346345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
347 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π[,]𝑑) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
348347adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
349253, 255eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
350224, 349oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
351219recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℂ)
352241adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
353239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
354352halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
355354sincld 16098 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
356353, 355mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
357248adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
358351, 352, 356, 202, 357dmdcan2d 11988 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
359188, 350, 3583eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
360346, 348, 3593eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
361343, 344, 338, 360syl21anc 837 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
362343, 344, 338, 358syl21anc 837 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
363362eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
364 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)))
365 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
366365fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
367366oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑊) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
368 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
369367, 368oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
370369adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
371 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
372 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V
373372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V)
374364, 370, 371, 373fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
375 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
376 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
377376fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
378377oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
379368, 378oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380379adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
381 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
382381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
383375, 380, 371, 382fvmptd 6975 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
384374, 383oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
385384eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
386385adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
387361, 363, 3863eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
388387mpteq2dva 5200 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
389342, 388eqtr2d 2765 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
390389oveq2d 7403 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
39144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
392341, 309sstrd 3957 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
393 tgioo4 24693 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39422, 393dvres 25812 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(-π[,]𝑑)⟶ℂ) ∧ ((-π[,]𝑑) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
395391, 303, 309, 392, 394syl22anc 838 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
396 ioontr 45509 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
397396a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
398397reseq2d 5950 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
399390, 395, 3983eqtrrd 2769 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
40015ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
40116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
402265ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
403267ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
404 fourierdlem103.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
405404ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40662adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ (-π[,]π))
407341, 406sstrd 3957 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
408312rexrd 11224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ*)
40953a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
410 0red 11177 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
41155ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < 0)
412322, 315, 410, 334, 411lelttrd 11332 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) < 0)
413408, 322, 409, 412gtnelicc 45498 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
41439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑊 ∈ ℝ)
41511a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
416106ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π < 𝑑)
417 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
418 biid 261 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
419401, 264, 402, 403, 415, 315, 416, 406, 80, 73, 68, 127, 417, 289, 418fourierdlem50 46154 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
420419simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
421419simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
422369cbvmptv 5211 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
423379cbvmptv 5211 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
424 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
425400, 401, 264, 402, 403, 405, 312, 322, 176, 407, 413, 414, 80, 420, 421, 422, 423, 424fourierdlem72 46176 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
426399, 425eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
427 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
428 eqid 2729 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
429 fourierdlem103.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
430429, 420eqeltrid 2832 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
431 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
432431, 430jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
433 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
434433anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
435 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
436 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
437436fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
438435, 437oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
439 raleq 3296 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
441440rexbidv 3157 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
442434, 441imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
443 fourierdlem103.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444442, 443vtoclg 3520 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
445430, 432, 444sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
446 nfv 1914 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁))
447 nfra1 3261 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
448446, 447nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
449 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
45011a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
451450, 16readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
45210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
453452, 16readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
454451, 453iccssred 13395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
455 ressxr 11218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
456454, 455sstrdi 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
457456ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
458264, 402, 403fourierdlem15 46120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
459 elfzofz 13636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
460430, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
461458, 460ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462457, 461sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
463462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
464 fzofzp1 13725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
465430, 464syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
466458, 465ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
467457, 466sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
468467adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
469 elioore 13336 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
470469adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
47110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
472415, 471, 401, 264, 402, 403, 460, 80fourierdlem13 46118 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
473472simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
474473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
475454ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
476475, 461sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
477476adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
478474, 477eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
479401, 312readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
480479adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
481472simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
482476, 401resubcld 11606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
483481, 482eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
484415, 471, 401, 264, 402, 403, 465, 80fourierdlem13 46118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
485484simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
486475, 466sseldd 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
487486, 401resubcld 11606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
488485, 487eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
489429eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
490489fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
491489oveq1i 7397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
492491fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
493490, 492oveq12i 7399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
494421, 493sseqtrdi 3987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
495483, 488, 312, 322, 176, 494fourierdlem10 46115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
496495simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
497483, 312, 401, 496leadd2dd 11793 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
498497adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
499480rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
500401, 322readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
501500rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
502501adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
503 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
504 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
505499, 502, 503, 504syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
506478, 480, 470, 498, 505lelttrd 11332 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
507474, 506eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
508500adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
509484simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
510509, 486eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
511510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
512 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
513499, 502, 503, 512syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
514495simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
515322, 488, 401, 514leadd2dd 11793 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
516515adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
517470, 508, 511, 513, 516ltletrd 11334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
518509eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
519518adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
520517, 519breqtrd 5133 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
521463, 468, 470, 507, 520eliood 45496 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
522521adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
523 rspa 3226 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
524449, 522, 523syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
525524ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
526448, 525ralrimi 3235 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
527526ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
528527reximdv 3148 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
529445, 528mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
530438raleqdv 3299 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
531530rexbidv 3157 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
532434, 531imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
533 fourierdlem103.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
534532, 533vtoclg 3520 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
535430, 432, 534sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
536 nfra1 3261 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
537446, 536nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53815, 45fssd 6705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
539 ssid 3969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
540539a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
541 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
542541a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
54322, 393dvres 25812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
54445, 538, 540, 542, 543syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
545 ioontr 45509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
546545reseq2i 5947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
547546a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
548544, 547eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
549548fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
550 fvres 6877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
551549, 550sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
552551ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
553552fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
554553adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
555 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
556521adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
557 rspa 3226 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
558555, 556, 557syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
559554, 558eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
560559ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
561537, 560ralrimi 3235 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
562561ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
563562reximdv 3148 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
564535, 563mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
565415rexrd 11224 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
566565, 316, 310, 417fourierdlem8 46113 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
567126ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
568152, 308fssd 6705 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶ℝ)
569568ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
570 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ (-π[,]𝑑))
571153eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π = (𝐽‘0))
572154eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 = (𝐽𝑁))
573571, 572oveq12d 7405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
574573adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
575570, 574eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
576575adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
577 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
578 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
579578breq1d 5117 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
580579cbvrabv 3416 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
581580supeq1i 9398 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
582567, 569, 576, 577, 581fourierdlem25 46130 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
583546a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584538ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
585539a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
586541a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
587391, 584, 585, 586, 543syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
588521ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
589 dfss3 3935 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
590588, 589sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
591590resabs1d 5979 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
592583, 587, 5913eqtr4rd 2775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
593 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → 𝐶 ∈ (0..^𝑀))
594 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → (𝜑𝐶 ∈ (0..^𝑀)))
595438reseq2d 5950 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
596595, 438feq12d 6676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
597434, 596imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
598 cncff 24786 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
599404, 598syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
600597, 599vtoclg 3520 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
601593, 594, 600sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
602432, 601syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
603602, 590fssresd 6727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
604592, 603feq1dd 6671 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
605367, 378oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
606605cbvmptv 5211 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
607 biid 261 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ↔ ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
608 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
609608fveq2d 6862 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
610609breq1d 5117 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
611610cbvralvw 3215 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
612607, 611anbi12i 628 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
613 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
614613fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
615614breq1d 5117 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
616615cbvralvw 3215 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
617612, 616anbi12i 628 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
618262, 263, 12, 14, 62, 279, 280, 427, 428, 529, 564, 152, 176, 566, 582, 604, 606, 617fourierdlem80 46184 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
619358mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
620259, 619eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
621620oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
622621dmeqd 5869 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
623 nfcv 2891 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
624 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
625 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
626 nfmpt1 5206 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
627624, 625, 626nfov 7417 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
628627nfdm 5915 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
629623, 628raleqf 3329 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
630622, 629syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
631621fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
632631fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
633632breq1d 5117 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
634633ralbidv 3156 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
635630, 634bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
636635rexbidv 3157 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
637618, 636mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
638 eqid 2729 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
639 eqeq1 2733 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
640 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
641 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
642641fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
643640, 642oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
644643sseq2d 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
645644cbvriotavw 7354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
646645fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
647646eqeq2i 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
648647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
649 csbeq1 3865 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
650645, 649ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅
651650a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
652648, 651ifbieq1d 4513 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
653652mptru 1547 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
654653oveq1i 7397 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊)
655654oveq1i 7397 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘))
656655oveq1i 7397 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
657656a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
658 eqeq1 2733 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
659645oveq1i 7397 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
660659fveq2i 6861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
661660eqeq2i 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
662661a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
663 csbeq1 3865 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
664645, 663ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿
665664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
666662, 665ifbieq1d 4513 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
667666mptru 1547 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
668667oveq1i 7397 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊)
669668oveq1i 7397 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1)))
670669oveq1i 7397 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
671670a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
672 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
673658, 671, 672ifbieq12d 4517 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
674639, 657, 673ifbieq12d 4517 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
675674cbvmptv 5211 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
67612, 14, 67, 126, 152, 153, 154, 176, 292, 298, 301, 302, 426, 637, 638, 675fourierdlem73 46177 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
677 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
678677rexralbidv 3203 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
679678cbvralvw 3215 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
680676, 679sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
681680adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
682 rphalfcl 12980 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
683682ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (𝑒 / 2) ∈ ℝ+)
684 breq2 5111 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
685684rexralbidv 3203 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
686685rspccva 3587 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
687681, 683, 686syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688345a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
689140a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (-π(,)𝑑) ⊆ (-π[,]𝑑))
690689sselda 3946 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π[,]𝑑))
691690, 347syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
692688, 691eqtr2d 2765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑈𝑠) = (𝑂𝑠))
693692oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
694693itgeq2dv 25683 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
695694adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
696695fveq2d 6862 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
697 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
698696, 697eqbrtrd 5129 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
699698ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
700699adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
701700ralimdv 3147 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
702701reximdv 3148 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
703687, 702mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
704703adantr 480 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
705 nfv 1914 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0))
706 nfra1 3261 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
707705, 706nfan 1899 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708 nfv 1914 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
709707, 708nfan 1899 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
710 nfv 1914 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
711709, 710nfan 1899 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
712 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)))
713 eluznn 12877 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
714713adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
715712, 714jca 511 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
716715adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
717 simpllr 775 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
718713adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
719 rspa 3226 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
720717, 718, 719syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
721716, 720jca 511 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
722721adantlr 715 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
723 nnre 12193 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
724723rexrd 11224 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
725724adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
72623a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
727 eluzelre 12804 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
728 1re 11174 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
729728rehalfcli 12431 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 2) ∈ ℝ
730729a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
731727, 730readdcld 11203 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
732731adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
733723adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
734727adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
735 eluzle 12806 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
736735adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
737 halfgt0 12397 . . . . . . . . . . . . . . . . . . . . . . 23 0 < (1 / 2)
738737a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
739729a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
740739, 734ltaddposd 11762 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
741738, 740mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
742733, 734, 732, 736, 741lelttrd 11332 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
743732ltpnfd 13081 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
744725, 726, 732, 742, 743eliood 45496 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
745744adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
746 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
747 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
748747fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
749748oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
750749adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
751750itgeq2dv 25683 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = (𝑘 + (1 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
752751fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
753752breq1d 5117 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
754753rspcv 3584 . . . . . . . . . . . . . . . . . 18 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
755745, 746, 754sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
756755adantlll 718 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
757722, 756jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
758 fourierdlem103.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
759757, 758sylibr 234 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
76011a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → -π ∈ ℝ)
761 0red 11177 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ∈ ℝ)
762 ioossicc 13394 . . . . . . . . . . . . . . . . . . 19 (-π(,)0) ⊆ (-π[,]0)
763758biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
764 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (-π(,)0))
765763, 764syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ∈ (-π(,)0))
766762, 765sselid 3944 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (-π[,]0))
767 simp-5l 784 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
768763, 767syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝜑)
76943adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
77010rexri 11232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ*
771 0re 11176 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
772771, 10, 56ltleii 11297 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ π
773 iooss2 13342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
774770, 772, 773mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (-π(,)π)
775 ioossicc 13394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)π) ⊆ (-π[,]π)
776774, 775sstri 3956 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ⊆ (-π[,]π)
777776sseli 3942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π[,]π))
778777adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
779769, 778ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
780768, 779sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
781 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
782763, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑘 ∈ ℕ)
783782nnred 12201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℝ)
784729a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (1 / 2) ∈ ℝ)
785783, 784readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
786785adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑘 + (1 / 2)) ∈ ℝ)
787 elioore 13336 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
788787adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
789786, 788remulcld 11204 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
790789resincld 16111 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
791780, 790remulcld 11204 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
792791recnd 11202 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
79352a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ∈ ℝ*)
79453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ∈ ℝ*)
795760leidd 11744 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ -π)
796 ioossre 13368 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)0) ⊆ ℝ
797796, 765sselid 3944 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 ∈ ℝ)
798793, 794, 765, 54syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 < 0)
799797, 761, 798ltled 11322 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ≤ 0)
800 ioossioo 13402 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ -π ∧ 𝑑 ≤ 0)) → (-π(,)𝑑) ⊆ (-π(,)0))
801793, 794, 795, 799, 800syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ⊆ (-π(,)0))
802 ioombl 25466 . . . . . . . . . . . . . . . . . . . 20 (-π(,)𝑑) ∈ dom vol
803802a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ∈ dom vol)
804 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
805804anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
806 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → 𝑛 = 𝑘)
807806oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
808807oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
809808fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
810809oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
811810mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
812811eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
813805, 812imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
814776a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
815 ioombl 25466 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ dom vol
816815a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
81743ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
818817adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
819 nnre 12193 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
820 readdcl 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
821819, 729, 820sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
822821adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
823 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
824214, 823sselid 3944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
825822, 824remulcld 11204 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
826825resincld 16111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
827826adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
828818, 827remulcld 11204 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
829 fourierdlem103.g . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
830829a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
831 fourierdlem103.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
832831fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
833823, 826, 832syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
834833adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
835834oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
836835mpteq2dva 5200 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
837830, 836eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
83815adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
839 fourierdlem103.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ran 𝑉)
840839adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
84127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
84238adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
843819adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
844265adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
845267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
846269adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
847271adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
848273adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
849 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
850 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹) = (ℝ D 𝐹)
851599adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
852 fourierdlem103.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
853852adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
854 fourierdlem103.b . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
855854adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
856264, 838, 840, 841, 842, 40, 41, 42, 843, 831, 829, 844, 845, 846, 847, 848, 80, 849, 850, 851, 853, 855fourierdlem88 46192 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
857837, 856eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
858814, 816, 828, 857iblss 25706 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
859813, 858chvarvv 1989 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
860768, 782, 859syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
861801, 803, 791, 860iblss 25706 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (-π(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
862765, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → -π < 𝑑)
863760, 797, 862ltled 11322 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ 𝑑)
864761leidd 11744 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ≤ 0)
865 ioossioo 13402 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ 𝑑 ∧ 0 ≤ 0)) → (𝑑(,)0) ⊆ (-π(,)0))
866793, 794, 863, 864, 865syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ⊆ (-π(,)0))
867 ioombl 25466 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)0) ∈ dom vol
868867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ∈ dom vol)
869866, 868, 791, 860iblss 25706 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (𝑑(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
870760, 761, 766, 792, 861, 869itgsplitioo 25739 . . . . . . . . . . . . . . . . 17 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
871801sselda 3946 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π(,)0))
872871, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
873872, 861itgcl 25685 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
874866sselda 3946 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)0)) → 𝑠 ∈ (-π(,)0))
875874, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
876875, 869itgcl 25685 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
877873, 876addcomd 11376 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
878870, 877eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
879878fveq2d 6862 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
880876, 873addcld 11193 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
881880abscld 15405 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
882876abscld 15405 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
883873abscld 15405 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
884882, 883readdcld 11203 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
885 simp-5r 785 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
886763, 885syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
887886rpred 12995 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
888876, 873abstrid 15425 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
889 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
890763, 889syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
891763simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
892882, 883, 887, 890, 891lt2halvesd 12430 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
893881, 884, 887, 888, 892lelttrd 11332 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
894879, 893eqbrtrd 5129 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
895759, 894syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
896895ex 412 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
897711, 896ralrimi 3235 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
898897ex 412 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
899898reximdva 3146 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
900704, 899mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
901 negpilt0 45279 . . . . . . . . . . . . . 14 -π < 0
90211, 771, 10lttri 11300 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
903901, 56, 902mp2an 692 . . . . . . . . . . . . 13 -π < π
90411, 10, 903ltleii 11297 . . . . . . . . . . . 12 -π ≤ π
905904a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
906264fourierdlem2 46107 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
907265, 906syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
908267, 907mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
909908simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
910 elmapi 8822 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
911909, 910syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
912911ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
91316adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
914912, 913resubcld 11606 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
915914, 80fmptd 7086 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
91680a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
917 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
918917oveq1d 7402 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
919918adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
920265nnnn0d 12503 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
921 nn0uz 12835 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
922920, 921eleqtrdi 2838 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
923 eluzfz1 13492 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
924922, 923syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
925911, 924ffvelcdmd 7057 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
926925, 16resubcld 11606 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
927916, 919, 924, 926fvmptd 6975 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
928908simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
929928simpld 494 . . . . . . . . . . . . . 14 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
930929simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
931930oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
932450recnd 11202 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
93316recnd 11202 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
934932, 933pncand 11534 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
935927, 931, 9343eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
936450, 452, 16, 264, 849, 265, 267, 80fourierdlem14 46119 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
937849fourierdlem2 46107 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
938265, 937syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
939936, 938mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
940939simprd 495 . . . . . . . . . . . . 13 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
941940simpld 494 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) = -π ∧ (𝑄𝑀) = π))
942941simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
943940simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
944943r19.21bi 3229 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
94515adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
946849, 265, 936fourierdlem15 46120 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
947946adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
948 elfzofz 13636 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
949948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
950947, 949ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
951 fzofzp1 13725 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
952951adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
953947, 952ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
95416adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
955 ffn 6688 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
956909, 910, 9553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
957 fvelrnb 6921 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
958956, 957syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
959839, 958mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
960 oveq1 7394 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
961960adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
962933subidd 11521 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
963962ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
964961, 963eqtr2d 2765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
965964ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
966965reximdva 3146 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
967959, 966mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
96880elrnmpt 5922 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
969771, 968ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
970967, 969sylibr 234 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
971849, 265, 936, 970fourierdlem12 46117 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
972911adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
973972, 949ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
974973, 954resubcld 11606 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
97580fvmpt2 6979 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
976949, 974, 975syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
977976oveq1d 7402 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
978973recnd 11202 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
979933adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
980978, 979npcand 11537 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
981977, 980eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
982 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
983982oveq1d 7402 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
984983cbvmptv 5211 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
98580, 984eqtr4i 2755 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
986985a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
987 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
988987oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
989988adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
990972, 952ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
991990, 954resubcld 11606 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
992986, 989, 952, 991fvmptd 6975 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
993992oveq1d 7402 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
994990recnd 11202 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
995994, 979npcand 11537 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
996993, 995eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
997981, 996oveq12d 7405 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
998997reseq2d 5950 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
999997oveq1d 7402 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
1000269, 998, 9993eltr4d 2843 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
100128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
100239adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
1003945, 950, 953, 954, 971, 1000, 1001, 1002, 40fourierdlem40 46145 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
1004 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
100544a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
10061004, 1005fssd 6705 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1007404, 598, 10063syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1008 eqid 2729 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
100916, 264, 15, 839, 27, 39, 40, 265, 267, 271, 80, 849, 850, 1007, 854, 1008fourierdlem75 46179 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
1010 eqid 2729 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
101116, 264, 15, 839, 28, 38, 40, 265, 267, 273, 80, 849, 850, 599, 852, 1010fourierdlem74 46178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1012 fveq2 6858 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1013 oveq1 7394 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
10141013fveq2d 6862 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
10151012, 1014oveq12d 7405 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
10161015cbvmptv 5211 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1017450, 452, 905, 180, 265, 915, 935, 942, 944, 1003, 1009, 1011, 1016fourierdlem70 46174 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1018 eqid 2729 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1019 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10201019fveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10211020breq1d 5117 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10221021cbvralvw 3215 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10231022ralbii 3075 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
102410233anbi3i 1159 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10251024anbi1i 624 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10261025anbi1i 624 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10271026anbi1i 624 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
102815, 16, 28, 39, 40, 41, 42, 831, 829, 1017, 856, 1018, 1027fourierdlem87 46191 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1029 iftrue 4494 . . . . . . . . . . . . . . . 16 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10301029negeqd 11415 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
10311030adantl 481 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
103252a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ∈ ℝ*)
103353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
1034 rpre 12960 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10351034renegcld 11605 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 ∈ ℝ)
10361035adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ ℝ)
10371034adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
103810rehalfcli 12431 . . . . . . . . . . . . . . . . . 18 (π / 2) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
104010a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1041 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1042 halfpos 12412 . . . . . . . . . . . . . . . . . . . 20 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
104310, 1042ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < π ↔ (π / 2) < π)
104456, 1043mpbi 230 . . . . . . . . . . . . . . . . . 18 (π / 2) < π
10451044a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10461037, 1039, 1040, 1041, 1045lelttrd 11332 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10471037, 1040ltnegd 11756 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 < π ↔ -π < -𝑐))
10481046, 1047mpbid 232 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π < -𝑐)
1049 rpgt0 12964 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10501034lt0neg2d 11748 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 < 𝑐 ↔ -𝑐 < 0))
10511049, 1050mpbid 232 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 < 0)
10521051adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 < 0)
10531032, 1033, 1036, 1048, 1052eliood 45496 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ (-π(,)0))
10541031, 1053eqeltrd 2828 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1055 iffalse 4497 . . . . . . . . . . . . . . . 16 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
10561055negeqd 11415 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -(π / 2))
10571038renegcli 11483 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
10581057rexri 11232 . . . . . . . . . . . . . . . . . 18 -(π / 2) ∈ ℝ*
105952, 53, 10583pm3.2i 1340 . . . . . . . . . . . . . . . . 17 (-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*)
10601038, 10ltnegi 11722 . . . . . . . . . . . . . . . . . . 19 ((π / 2) < π ↔ -π < -(π / 2))
10611044, 1060mpbi 230 . . . . . . . . . . . . . . . . . 18 -π < -(π / 2)
1062 2pos 12289 . . . . . . . . . . . . . . . . . . . 20 0 < 2
106310, 101, 56, 1062divgt0ii 12100 . . . . . . . . . . . . . . . . . . 19 0 < (π / 2)
1064 lt0neg2 11685 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
10651038, 1064ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < (π / 2) ↔ -(π / 2) < 0)
10661063, 1065mpbi 230 . . . . . . . . . . . . . . . . . 18 -(π / 2) < 0
10671061, 1066pm3.2i 470 . . . . . . . . . . . . . . . . 17 (-π < -(π / 2) ∧ -(π / 2) < 0)
1068 elioo3g 13335 . . . . . . . . . . . . . . . . 17 (-(π / 2) ∈ (-π(,)0) ↔ ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*) ∧ (-π < -(π / 2) ∧ -(π / 2) < 0)))
10691059, 1067, 1068mpbir2an 711 . . . . . . . . . . . . . . . 16 -(π / 2) ∈ (-π(,)0)
10701069a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -(π / 2) ∈ (-π(,)0))
10711056, 1070eqeltrd 2828 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10721071adantl 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10731054, 1072pm2.61dan 812 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
107410733ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1075 ioombl 25466 . . . . . . . . . . . . . . 15 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol
10761075a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol)
1077 simpr 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10781076, 1077jca 511 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1079 ioossicc 13394 . . . . . . . . . . . . . . . . 17 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0)
10801079a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0))
108111a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
108210a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
10831037, 1040, 1046ltled 11322 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ π)
10841037, 1040lenegd 11757 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 ≤ π ↔ -π ≤ -𝑐))
10851083, 1084mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -𝑐)
10861030eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ≤ (π / 2) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10871086adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10881085, 1087breqtrd 5133 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
108911, 1057, 1061ltleii 11297 . . . . . . . . . . . . . . . . . . . 20 -π ≤ -(π / 2)
10901089a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -(π / 2))
10911056eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 𝑐 ≤ (π / 2) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10921091adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10931090, 1092breqtrd 5133 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10941088, 1093pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1095772a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 ≤ π)
1096 iccss 13375 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∧ 0 ≤ π)) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10971081, 1082, 1094, 1095, 1096syl22anc 838 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10981080, 1097sstrd 3957 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π))
1099796, 1073sselid 3944 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
1100 0red 11177 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
1101 rpge0 12965 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℝ+ → 0 ≤ 𝑐)
11021101adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ 𝑐)
11031041iftrued 4496 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
11041102, 1103breqtrrd 5135 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1105771, 1038, 1063ltleii 11297 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (π / 2)
1106 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → ¬ 𝑐 ≤ (π / 2))
11071106iffalsed 4499 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
11081105, 1107breqtrrid 5145 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11091104, 1108pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11101038a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
11111034, 1110ifcld 4535 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
11121111le0neg2d 11750 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ↔ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0))
11131109, 1112mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0)
1114 volioo 25470 . . . . . . . . . . . . . . . . . 18 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0) → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11151099, 1100, 1113, 1114syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
1116 0cn 11166 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
11171116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℂ)
11181111recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
11191117, 1118subnegd 11540 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11201118addlidd 11375 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11211115, 1119, 11203eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1122 min1 13149 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11231034, 1038, 1122sylancl 586 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11241121, 1123eqbrtrd 5129 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)
11251098, 1124jca 511 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11261125adantr 480 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
1127 sseq1 3972 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (𝑢 ⊆ (-π[,]π) ↔ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π)))
1128 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (vol‘𝑢) = (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)))
11291128breq1d 5117 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11301127, 1129anbi12d 632 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)))
1131 itgeq1 25674 . . . . . . . . . . . . . . . . . 18 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11321131fveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11331132breq1d 5117 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11341133ralbidv 3156 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11351130, 1134imbi12d 344 . . . . . . . . . . . . . 14 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
11361135rspcva 3586 . . . . . . . . . . . . 13 (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11371078, 1126, 1136sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
113811373adant1 1130 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1139 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (𝑑(,)0) = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0))
11401139itgeq1d 45955 . . . . . . . . . . . . . . 15 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11411140fveq2d 6862 . . . . . . . . . . . . . 14 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11421141breq1d 5117 . . . . . . . . . . . . 13 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11431142ralbidv 3156 . . . . . . . . . . . 12 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11441143rspcev 3588 . . . . . . . . . . 11 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0) ∧ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11451074, 1138, 1144syl2anc 584 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11461145rexlimdv3a 3138 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11471028, 1146mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1148900, 1147r19.29a 3141 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
11491148ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1150 nnex 12192 . . . . . . . . 9 ℕ ∈ V
11511150mptex 7197 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V
11521151a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V)
1153 eqidd 2730 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠))
1154777adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1155779ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1156777adantl 481 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1157 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1158 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11591157, 1158eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11601159nnred 12201 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1161729a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11621160, 1161readdcld 11203 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11631162adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1164214, 1156sselid 3944 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11651163, 1164remulcld 11204 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11661165resincld 16111 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11671156, 1166, 832syl2anc 584 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11681167adantlll 718 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11691160adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11701169adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑛 ∈ ℝ)
1171 1red 11175 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 1 ∈ ℝ)
11721171rehalfcld 12429 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (1 / 2) ∈ ℝ)
11731170, 1172readdcld 11203 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1174214, 1154sselid 3944 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11751173, 1174remulcld 11204 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11761175resincld 16111 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11771168, 1176eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) ∈ ℝ)
11781155, 1177remulcld 11204 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1179829fvmpt2 6979 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11801154, 1178, 1179syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1181 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11821181oveq1d 7402 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11831182fveq2d 6862 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11841183ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11851168, 1184eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11861185oveq2d 7403 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11871180, 1186eqtrd 2764 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11881187itgeq2dv 25683 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1189 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1190810itgeq2dv 25683 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11911190eleq1d 2813 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1192805, 1191imbi12d 344 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1193779adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1194 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11951194, 777, 826syl2an 596 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11961193, 1195remulcld 11204 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11971196, 858itgcl 25685 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11981192, 1197chvarvv 1989 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11991153, 1188, 1189, 1198fvmptd 6975 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑘) = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
12009, 2, 1152, 1199, 1198clim0c 15473 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
12011149, 1200mpbird 257 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0)
12021150mptex 7197 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π)) ∈ V
12036, 1202eqeltri 2824 . . . . . 6 𝐸 ∈ V
12041203a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
12051150mptex 7197 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
12061205a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
1207 picn 26367 . . . . . . 7 π ∈ ℂ
12081207a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1209 eqidd 2730 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1210 eqidd 2730 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1211 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
121210a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
12131209, 1210, 1211, 1212fvmptd 6975 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12141213adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12159, 2, 1206, 1208, 1214climconst 15509 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1216771, 56gtneii 11286 . . . . . 6 π ≠ 0
12171216a1i 11 . . . . 5 (𝜑 → π ≠ 0)
121816adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
121928adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
122039adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1221838, 1218, 1219, 1220, 40, 41, 42, 843, 831, 829fourierdlem67 46171 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
12221221adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝐺:(-π[,]π)⟶ℝ)
1223814sselda 3946 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
12241222, 1223ffvelcdmd 7057 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) ∈ ℝ)
12251221ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
12261221feqmptd 6929 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
12271226, 856eqeltrrd 2829 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1228814, 816, 1225, 1227iblss 25706 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ (𝐺𝑠)) ∈ 𝐿1)
12291224, 1228itgcl 25685 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ)
1230 eqid 2729 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
12311230fvmpt2 6979 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12321194, 1229, 1231syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12331232, 1229eqeltrd 2828 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1234 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1235 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
12361235fvmpt2 6979 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12371234, 10, 1236sylancl 586 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12381207a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ∈ ℂ)
12391216a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ≠ 0)
12401238, 1239jca 511 . . . . . . . 8 (𝑛 ∈ ℕ → (π ∈ ℂ ∧ π ≠ 0))
1241 eldifsn 4750 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
12421240, 1241sylibr 234 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
12431237, 1242eqeltrd 2828 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12441243adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12451207a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
12461216a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
12471229, 1245, 1246divcld 11958 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
12486fvmpt2 6979 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12491194, 1247, 1248syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12501232eqcomd 2735 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛))
12511237eqcomd 2735 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12521251adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12531250, 1252oveq12d 7405 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12541249, 1253eqtrd 2764 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12553, 4, 5, 8, 9, 2, 1201, 1204, 1215, 1217, 1233, 1244, 1254climdivf 45610 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12561207, 1216div0i 11916 . . . . 5 (0 / π) = 0
12571256a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12581255, 1257breqtrd 5133 . . 3 (𝜑𝐸 ⇝ 0)
1259 fourierdlem103.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12601150mptex 7197 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12611259, 1260eqeltri 2824 . . . 4 𝑍 ∈ V
12621261a1i 11 . . 3 (𝜑𝑍 ∈ V)
12631150mptex 7197 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V
12641263a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V)
1265 limccl 25776 . . . . . 6 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
12661265, 38sselid 3944 . . . . 5 (𝜑𝑊 ∈ ℂ)
12671266halfcld 12427 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℂ)
1268 eqidd 2730 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) = (𝑚 ∈ ℕ ↦ (𝑊 / 2)))
1269 eqidd 2730 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑊 / 2) = (𝑊 / 2))
12709eqcomi 2738 . . . . . . . 8 (ℤ‘1) = ℕ
12711270eleq2i 2820 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12721271biimpi 216 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12731272adantl 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12741267adantr 480 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑊 / 2) ∈ ℂ)
12751268, 1269, 1273, 1274fvmptd 6975 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) = (𝑊 / 2))
12761, 2, 1264, 1267, 1275climconst 15509 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ⇝ (𝑊 / 2))
12771247, 6fmptd 7086 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12781277adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12791278, 1273ffvelcdmd 7057 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12801275, 1274eqeltrd 2828 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) ∈ ℂ)
12811275oveq2d 7403 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑊 / 2)))
1282815a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ∈ dom vol)
128352a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → -π ∈ ℝ*)
1284 0red 11177 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ)
12851284rexrd 11224 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ*)
1286 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π(,)0))
1287 iooltub 45508 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π(,)0)) → 𝑠 < 0)
12881283, 1285, 1286, 1287syl3anc 1373 . . . . . . . . . . . 12 (𝑠 ∈ (-π(,)0) → 𝑠 < 0)
1289787, 1288ltned 11310 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ≠ 0)
12901289neneqd 2930 . . . . . . . . . 10 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 = 0)
1291 velsn 4605 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12921290, 1291sylnibr 329 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 ∈ {0})
1293777, 1292eldifd 3925 . . . . . . . 8 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12941293ssriv 3950 . . . . . . 7 (-π(,)0) ⊆ ((-π[,]π) ∖ {0})
12951294a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ⊆ ((-π[,]π) ∖ {0}))
1296 fourierdlem103.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1297787adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
1298 0red 11177 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 0 ∈ ℝ)
1299787, 1284, 1288ltled 11322 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → 𝑠 ≤ 0)
13001299adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ≤ 0)
13011297, 1298, 1300lensymd 11325 . . . . . . 7 ((𝜑𝑠 ∈ (-π(,)0)) → ¬ 0 < 𝑠)
13021301iffalsed 4499 . . . . . 6 ((𝜑𝑠 ∈ (-π(,)0)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
1303 eqid 2729 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
130411a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
1305 0red 11177 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
130611, 771, 901ltleii 11297 . . . . . . . . 9 -π ≤ 0
13071306a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ≤ 0)
1308 eqid 2729 . . . . . . . 8 (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
13091296, 1194, 1303, 1304, 1305, 1307, 1308dirkeritg 46100 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)))
1310 ubicc2 13426 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → 0 ∈ (-π[,]0))
131152, 53, 1306, 1310mp3an 1463 . . . . . . . . . 10 0 ∈ (-π[,]0)
1312 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1313239, 244div0i 11916 . . . . . . . . . . . . . . . . 17 (0 / 2) = 0
13141313a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (0 / 2) = 0)
13151312, 1314eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1316 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
1317 elfzelz 13485 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
13181317zcnd 12639 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
13191318mul01d 11373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
13201316, 1319sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
13211320fveq2d 6862 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1322 sin0 16117 . . . . . . . . . . . . . . . . . . . . 21 (sin‘0) = 0
13231322a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘0) = 0)
13241321, 1323eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13251324oveq1d 7402 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
1326 0red 11177 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1327 1red 11175 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
13281317zred 12638 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
132999a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 < 1)
1330 elfzle1 13488 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
13311326, 1327, 1328, 1329, 1330ltletrd 11334 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
13321331gt0ne0d 11742 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
13331318, 1332div0d 11957 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
13341333adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13351325, 1334eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13361335sumeq2dv 15668 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1337 fzfi 13937 . . . . . . . . . . . . . . . . . . 19 (1...𝑛) ∈ Fin
13381337olci 866 . . . . . . . . . . . . . . . . . 18 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1339 sumz 15688 . . . . . . . . . . . . . . . . . 18 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
13401338, 1339ax-mp 5 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (1...𝑛)0 = 0
13411340a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)0 = 0)
13421336, 1341eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13431315, 1342oveq12d 7405 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1344 00id 11349 . . . . . . . . . . . . . . 15 (0 + 0) = 0
13451344a1i 11 . . . . . . . . . . . . . 14 (𝑠 = 0 → (0 + 0) = 0)
13461343, 1345eqtrd 2764 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13471346oveq1d 7402 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13481256a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → (0 / π) = 0)
13491347, 1348eqtrd 2764 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1350771elexi 3470 . . . . . . . . . . 11 0 ∈ V
13511349, 1308, 1350fvmpt 6968 . . . . . . . . . 10 (0 ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13521311, 1351ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
1353 lbicc2 13425 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → -π ∈ (-π[,]0))
135452, 53, 1306, 1353mp3an 1463 . . . . . . . . . . 11 -π ∈ (-π[,]0)
1355 oveq1 7394 . . . . . . . . . . . . . 14 (𝑠 = -π → (𝑠 / 2) = (-π / 2))
1356 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑠 = -π → (𝑘 · 𝑠) = (𝑘 · -π))
13571356fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝑠 = -π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · -π)))
13581357oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑠 = -π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · -π)) / 𝑘))
13591358sumeq2sdv 15669 . . . . . . . . . . . . . 14 (𝑠 = -π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘))
13601355, 1359oveq12d 7405 . . . . . . . . . . . . 13 (𝑠 = -π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)))
13611360oveq1d 7402 . . . . . . . . . . . 12 (𝑠 = -π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
1362 ovex 7420 . . . . . . . . . . . 12 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) ∈ V
13631361, 1308, 1362fvmpt 6968 . . . . . . . . . . 11 (-π ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
13641354, 1363ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π)
1365 mulneg12 11616 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℂ ∧ π ∈ ℂ) → (-𝑘 · π) = (𝑘 · -π))
13661318, 1207, 1365sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → (-𝑘 · π) = (𝑘 · -π))
13671366eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) = (-𝑘 · π))
13681367oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = ((-𝑘 · π) / π))
13691318negcld 11520 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℂ)
13701207a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
13711216a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ≠ 0)
13721369, 1370, 1371divcan4d 11964 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((-𝑘 · π) / π) = -𝑘)
13731368, 1372eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = -𝑘)
13741317znegcld 12640 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℤ)
13751373, 1374eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) ∈ ℤ)
1376 negpicn 26371 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℂ
13771376a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → -π ∈ ℂ)
13781318, 1377mulcld 11194 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) ∈ ℂ)
1379 sineq0 26433 . . . . . . . . . . . . . . . . . 18 ((𝑘 · -π) ∈ ℂ → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13801378, 1379syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13811375, 1380mpbird 257 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · -π)) = 0)
13821381oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = (0 / 𝑘))
13831382, 1333eqtrd 2764 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = 0)
13841383sumeq2i 15664 . . . . . . . . . . . . 13 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0
13851384, 1340eqtri 2752 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = 0
13861385oveq2i 7398 . . . . . . . . . . 11 ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) = ((-π / 2) + 0)
13871386oveq1i 7397 . . . . . . . . . 10 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) = (((-π / 2) + 0) / π)
13881376, 239, 244divcli 11924 . . . . . . . . . . . . . 14 (-π / 2) ∈ ℂ
13891388addridi 11361 . . . . . . . . . . . . 13 ((-π / 2) + 0) = (-π / 2)
1390 divneg 11874 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
13911207, 239, 244, 1390mp3an 1463 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
13921389, 1391eqtr4i 2755 . . . . . . . . . . . 12 ((-π / 2) + 0) = -(π / 2)
13931392oveq1i 7397 . . . . . . . . . . 11 (((-π / 2) + 0) / π) = (-(π / 2) / π)
13941038recni 11188 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
1395 divneg 11874 . . . . . . . . . . . . 13 (((π / 2) ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → -((π / 2) / π) = (-(π / 2) / π))
13961394, 1207, 1216, 1395mp3an 1463 . . . . . . . . . . . 12 -((π / 2) / π) = (-(π / 2) / π)
13971396eqcomi 2738 . . . . . . . . . . 11 (-(π / 2) / π) = -((π / 2) / π)
13981207, 239, 1207, 244, 1216divdiv32i 11937 . . . . . . . . . . . . 13 ((π / 2) / π) = ((π / π) / 2)
13991207, 1216dividi 11915 . . . . . . . . . . . . . 14 (π / π) = 1
14001399oveq1i 7397 . . . . . . . . . . . . 13 ((π / π) / 2) = (1 / 2)
14011398, 1400eqtri 2752 . . . . . . . . . . . 12 ((π / 2) / π) = (1 / 2)
14021401negeqi 11414 . . . . . . . . . . 11 -((π / 2) / π) = -(1 / 2)
14031393, 1397, 14023eqtri 2756 . . . . . . . . . 10 (((-π / 2) + 0) / π) = -(1 / 2)
14041364, 1387, 14033eqtri 2756 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = -(1 / 2)
14051352, 1404oveq12i 7399 . . . . . . . 8 (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2))
14061405a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2)))
1407 halfcn 12396 . . . . . . . . . 10 (1 / 2) ∈ ℂ
14081116, 1407subnegi 11501 . . . . . . . . 9 (0 − -(1 / 2)) = (0 + (1 / 2))
14091407addlidi 11362 . . . . . . . . 9 (0 + (1 / 2)) = (1 / 2)
14101408, 1409eqtri 2752 . . . . . . . 8 (0 − -(1 / 2)) = (1 / 2)
14111410a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (0 − -(1 / 2)) = (1 / 2))
14121309, 1406, 14113eqtrd 2768 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
141315, 16, 264, 265, 267, 839, 269, 271, 273, 40, 41, 42, 831, 829, 850, 599, 852, 854, 27, 38, 1282, 1295, 6, 1296, 39, 1302, 1412fourierdlem95 46199 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14141273, 1413syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14151259a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1416 fveq2 6858 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
14171416fveq1d 6860 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
14181417oveq2d 7403 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14191418adantr 480 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14201419itgeq2dv 25683 . . . . . . . 8 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14211420adantl 481 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
142215adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
142316adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
14241423, 1297readdcld 11203 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑋 + 𝑠) ∈ ℝ)
14251422, 1424ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14261425adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14271296dirkerf 46095 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
14281427ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐷𝑛):ℝ⟶ℝ)
1429787adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
14301428, 1429ffvelcdmd 7057 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14311426, 1430remulcld 11204 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
143215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
143316adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1434214sseli 3942 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
14351434adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14361433, 1435readdcld 11203 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
14371432, 1436ffvelcdmd 7057 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14381437adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14391427ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
14401434adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14411439, 1440ffvelcdmd 7057 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14421438, 1441remulcld 11204 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
144310a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
14441296dirkercncf 46105 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
14451444adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1446 eqid 2729 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14471304, 1443, 838, 1218, 264, 844, 845, 846, 847, 848, 80, 849, 1445, 1446fourierdlem84 46188 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1448814, 816, 1442, 1447iblss 25706 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
14491431, 1448itgrecl 25699 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
14501415, 1421, 1194, 1449fvmptd 6975 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14511450eqcomd 2735 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14521273, 1451syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14531281, 1414, 14523eqtrrd 2769 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)))
14541, 2, 1258, 1262, 1276, 1279, 1280, 1453climadd 15598 . 2 (𝜑𝑍 ⇝ (0 + (𝑊 / 2)))
14551267addlidd 11375 . 2 (𝜑 → (0 + (𝑊 / 2)) = (𝑊 / 2))
14561454, 1455breqtrd 5133 1 (𝜑𝑍 ⇝ (𝑊 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cio 6462   Fn wfn 6506  wf 6507  cfv 6511   Isom wiso 6512  crio 7343  (class class class)co 7387  m cmap 8799  Fincfn 8918  supcsup 9391  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  0cn0 12442  cz 12529  cuz 12793  +crp 12951  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615   mod cmo 13831  chash 14295  abscabs 15200  cli 15450  Σcsu 15652  sincsin 16029  πcpi 16032  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  intcnt 22904  cnccncf 24769  volcvol 25364  𝐿1cibl 25518  citg 25519   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierdlem112  46216
  Copyright terms: Public domain W3C validator