Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem103 Structured version   Visualization version   GIF version

Theorem fourierdlem103 44440
Description: The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem103.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem103.xre (𝜑𝑋 ∈ ℝ)
fourierdlem103.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem103.m (𝜑𝑀 ∈ ℕ)
fourierdlem103.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem103.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem103.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem103.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem103.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem103.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem103.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem103.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem103.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem103.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem103.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem103.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem103.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem103.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem103.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
fourierdlem103.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem103.o 𝑂 = (𝑈 ↾ (-π[,]𝑑))
fourierdlem103.t 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
fourierdlem103.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem103.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem103.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem103.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem103.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem103 (𝜑𝑍 ⇝ (𝑊 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑖,𝑊,𝑘,𝑙,𝑠,𝑡   𝑚,𝑊,𝑛,𝑖   𝑤,𝑊,𝑧   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑌,𝑠   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑓,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑒,𝑓,𝑝,𝑑)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem103
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12534 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1917 . . . . 5 𝑛𝜑
4 nfmpt1 5213 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
5 nfmpt1 5213 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem103.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5213 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2905 . . . . 5 𝑛𝐸
9 nnuz 12806 . . . . 5 ℕ = (ℤ‘1)
10 pire 25815 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
1110renegcli 11462 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ)
13 elioore 13294 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (-π(,)0) → 𝑑 ∈ ℝ)
1413adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ ℝ)
15 fourierdlem103.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
16 fourierdlem103.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
17 ioossre 13325 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1915, 18fssresd 6709 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
20 ioosscn 13326 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
22 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 pnfxr 11209 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2516ltpnfd 13042 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2622, 24, 16, 25lptioo1cn 43877 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
27 fourierdlem103.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2819, 21, 26, 27limcrecl 43860 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
29 ioossre 13325 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3115, 30fssresd 6709 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
32 ioosscn 13326 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
34 mnfxr 11212 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3616mnfltd 13045 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3722, 35, 16, 36lptioo2cn 43876 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
38 fourierdlem103.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3931, 33, 37, 38limcrecl 43860 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
40 fourierdlem103.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
41 fourierdlem103.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
42 fourierdlem103.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4315, 16, 28, 39, 40, 41, 42fourierdlem55 44392 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
44 ax-resscn 11108 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4544a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4643, 45fssd 6686 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4746adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℂ)
4811a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ∈ ℝ)
4910a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → π ∈ ℝ)
5048leidd 11721 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ≤ -π)
51 0red 11158 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 ∈ ℝ)
5211rexri 11213 . . . . . . . . . . . . . . . . . . . . . 22 -π ∈ ℝ*
53 0xr 11202 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
54 iooltub 43738 . . . . . . . . . . . . . . . . . . . . . 22 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
5552, 53, 54mp3an12 1451 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 𝑑 < 0)
56 pipos 25817 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 < π)
5813, 51, 49, 55, 57lttrd 11316 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (-π(,)0) → 𝑑 < π)
5913, 49, 58ltled 11303 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → 𝑑 ≤ π)
60 iccss 13332 . . . . . . . . . . . . . . . . . . 19 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 𝑑 ≤ π)) → (-π[,]𝑑) ⊆ (-π[,]π))
6148, 49, 50, 59, 60syl22anc 837 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (-π(,)0) → (-π[,]𝑑) ⊆ (-π[,]π))
6261adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ (-π[,]π))
6347, 62fssresd 6709 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ)
64 fourierdlem103.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (-π[,]𝑑))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑈 ↾ (-π[,]𝑑)))
6665feq1d 6653 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑂:(-π[,]𝑑)⟶ℂ ↔ (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ))
6763, 66mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂:(-π[,]𝑑)⟶ℂ)
68 fourierdlem103.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝑇) − 1)
6911elexi 3464 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -π ∈ V
7069prid1 4723 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ {-π, 𝑑}
71 elun1 4136 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π ∈ {-π, 𝑑} → -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
73 fourierdlem103.t . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
7472, 73eleqtrri 2837 . . . . . . . . . . . . . . . . . . . . . . 23 -π ∈ 𝑇
7574ne0ii 4297 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ≠ ∅)
77 prfi 9266 . . . . . . . . . . . . . . . . . . . . . . . . 25 {-π, 𝑑} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {-π, 𝑑} ∈ Fin)
79 fzfi 13877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0...𝑀) ∈ Fin
80 fourierdlem103.q . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 43378 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝑄 ∈ Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 9212 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
86 unfi 9116 . . . . . . . . . . . . . . . . . . . . . . . 24 (({-π, 𝑑} ∈ Fin ∧ (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8873, 87eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ Fin)
89 hashnncl 14266 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9176, 90mpbird 256 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝑇) ∈ ℕ)
92 nnm1nn0 12454 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9468, 93eqeltrid 2842 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
9594adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ0)
96 0red 11158 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ)
97 1red 11156 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ∈ ℝ)
9895nn0red 12474 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
99 0lt1 11677 . . . . . . . . . . . . . . . . . . . 20 0 < 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 1)
101 2re 12227 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ∈ ℝ)
10391nnred 12168 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝑇) ∈ ℝ)
104103adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘𝑇) ∈ ℝ)
105 ioogtlb 43723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → -π < 𝑑)
10652, 53, 105mp3an12 1451 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (-π(,)0) → -π < 𝑑)
10748, 106ltned 11291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (-π(,)0) → -π ≠ 𝑑)
108107adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≠ 𝑑)
109 hashprg 14295 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
11012, 14, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
111108, 110mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) = 2)
112111eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 2 = (♯‘{-π, 𝑑}))
11388adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ∈ Fin)
114 ssun1 4132 . . . . . . . . . . . . . . . . . . . . . . . 24 {-π, 𝑑} ⊆ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
115114, 73sseqtrri 3981 . . . . . . . . . . . . . . . . . . . . . . 23 {-π, 𝑑} ⊆ 𝑇
116 hashssle 43522 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 ∈ Fin ∧ {-π, 𝑑} ⊆ 𝑇) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
117113, 115, 116sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
118112, 117eqbrtrd 5127 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ≤ (♯‘𝑇))
119102, 104, 97, 118lesub1dd 11771 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
120 1e2m1 12280 . . . . . . . . . . . . . . . . . . . 20 1 = (2 − 1)
121119, 120, 683brtr4g 5139 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ≤ 𝑁)
12296, 97, 98, 100, 121ltletrd 11315 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 𝑁)
123122gt0ne0d 11719 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ≠ 0)
12495, 123jca 512 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
125 elnnne0 12427 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
126124, 125sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ)
127 fourierdlem103.j . . . . . . . . . . . . . . . . . 18 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12850adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ -π)
12948, 13, 106ltled 11303 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (-π(,)0) → -π ≤ 𝑑)
130129adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ 𝑑)
13112, 14, 12, 128, 130eliccd 43732 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ (-π[,]𝑑))
13214leidd 11721 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑑)
13312, 14, 14, 130, 132eliccd 43732 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ (-π[,]𝑑))
134131, 133jca 512 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)))
135 vex 3449 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
13669, 135prss 4780 . . . . . . . . . . . . . . . . . . . . 21 ((-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)) ↔ {-π, 𝑑} ⊆ (-π[,]𝑑))
137134, 136sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ (-π[,]𝑑))
138 inss2 4189 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑))
140 ioossicc 13350 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)𝑑) ⊆ (-π[,]𝑑)
141139, 140sstrdi 3956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π[,]𝑑))
142137, 141unssd 4146 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ (-π[,]𝑑))
14373, 142eqsstrid 3992 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ (-π[,]𝑑))
14474a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ 𝑇)
145135prid2 4724 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ {-π, 𝑑}
146 elun1 4136 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ {-π, 𝑑} → 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
148147, 73eleqtrri 2837 . . . . . . . . . . . . . . . . . . 19 𝑑𝑇
149148a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑇)
150113, 68, 127, 12, 14, 143, 144, 149fourierdlem52 44389 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → ((𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π) ∧ (𝐽𝑁) = 𝑑))
151150simpld 495 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π))
152151simpld 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
153151simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽‘0) = -π)
154150simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽𝑁) = 𝑑)
155 elfzoelz 13572 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
156155zred 12607 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
157156adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
158157ltp1d 12085 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15948, 13jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (-π(,)0) → (-π ∈ ℝ ∧ 𝑑 ∈ ℝ))
16069, 135prss 4780 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) ↔ {-π, 𝑑} ⊆ ℝ)
161159, 160sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (-π(,)0) → {-π, 𝑑} ⊆ ℝ)
162161adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ ℝ)
163 ioossre 13325 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)𝑑) ⊆ ℝ
164138, 163sstri 3953 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ)
166162, 165unssd 4146 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ ℝ)
16773, 166eqsstrid 3992 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ ℝ)
168113, 167, 127, 68fourierdlem36 44374 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
169168adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
170 elfzofz 13588 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
171170adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
172 fzofzp1 13669 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
173172adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
174 isorel 7271 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
175169, 171, 173, 174syl12anc 835 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
176158, 175mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17743adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
178177, 62feqresmpt 6911 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)) = (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)))
17962sselda 3944 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
18015, 16, 28, 39, 40fourierdlem9 44347 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
181180ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐻:(-π[,]π)⟶ℝ)
182181, 179ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) ∈ ℝ)
18341fourierdlem43 44381 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐾:(-π[,]π)⟶ℝ)
185184, 179ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) ∈ ℝ)
186182, 185remulcld 11185 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18742fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
188179, 186, 187syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
18911a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
19013adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ)
191 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]𝑑))
192 eliccre 43733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
193189, 190, 191, 192syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
194 0red 11158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 0 ∈ ℝ)
19552a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ*)
196190rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ*)
197 iccleub 13319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
198195, 196, 191, 197syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
19955adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < 0)
200193, 190, 194, 198, 199lelttrd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < 0)
201193, 200ltned 11291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
202201adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
203202neneqd 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
204203iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
205193, 194, 200ltnsymd 11304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
206205adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
207206iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
208207oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
209208oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
210204, 209eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
21115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐹:ℝ⟶ℝ)
21216ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑋 ∈ ℝ)
213 iccssre 13346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21411, 10, 213mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
215214, 179sselid 3942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
216212, 215readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑋 + 𝑠) ∈ ℝ)
217211, 216ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21839ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑊 ∈ ℝ)
219217, 218resubcld 11583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℝ)
220219, 215, 202redivcld 11983 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ ℝ)
221210, 220eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
22240fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
223179, 221, 222syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
224223, 204, 2093eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22510a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → π ∈ ℝ)
226225renegcld 11582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
227 iccgelb 13320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
228195, 196, 191, 227syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
22958adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < π)
230193, 190, 225, 198, 229lelttrd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < π)
231193, 225, 230ltled 11303 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≤ π)
232226, 225, 193, 228, 231eliccd 43732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
233201neneqd 2948 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
234233iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
235101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℝ)
236193rehalfcld 12400 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℝ)
237236resincld 16025 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℝ)
238235, 237remulcld 11185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
239 2cn 12228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℂ
240239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
241193recnd 11183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
242241halfcld 12398 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
243242sincld 16012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
244 2ne0 12257 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
245244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ≠ 0)
246 fourierdlem44 44382 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
247232, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ≠ 0)
248240, 243, 245, 247mulne0d 11807 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
249193, 238, 248redivcld 11983 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
250234, 249eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
25141fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252232, 250, 251syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
253252adantll 712 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254224, 253oveq12d 7375 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255203iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
256255oveq2d 7373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
257188, 254, 2563eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
258257mpteq2dva 5205 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25965, 178, 2583eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
260259adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
261260reseq1d 5936 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
26215adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
26316adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
264 fourierdlem103.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
265 fourierdlem103.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
266265adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑀 ∈ ℕ)
267 fourierdlem103.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
268267adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑉 ∈ (𝑃𝑀))
269 fourierdlem103.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
270269adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
271 fourierdlem103.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
272271adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
273 fourierdlem103.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
274273adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
275106adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π < 𝑑)
27652a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ*)
27753a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ*)
27855adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
279276, 14, 277, 278gtnelicc 43728 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ¬ 0 ∈ (-π[,]𝑑))
28039adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑊 ∈ ℝ)
281 eqid 2736 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
282 eqid 2736 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
283 eqid 2736 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
284 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
285 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
286285fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
287284, 286oveq12d 7375 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
288287sseq2d 3976 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
289288cbvriotavw 7323 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
290262, 263, 264, 266, 268, 270, 272, 274, 12, 14, 275, 62, 279, 280, 281, 80, 73, 68, 127, 282, 283, 289fourierdlem86 44423 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
291290simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
292261, 291eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
293290simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))))
294293simpld 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295260eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
296295reseq1d 5936 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
297296oveq1d 7372 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
298294, 297eleqtrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
299293simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
300296oveq1d 7372 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
301299, 300eleqtrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
302 eqid 2736 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
30367adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(-π[,]𝑑)⟶ℂ)
30411a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ∈ ℝ)
30514ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
306 elioore 13294 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
307306adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30862, 214sstrdi 3956 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ ℝ)
309308adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ ℝ)
310152adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
311310, 171ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (-π[,]𝑑))
312309, 311sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
313312adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31452a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
31514adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
316315rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
317 iccgelb 13320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽𝑘) ∈ (-π[,]𝑑)) → -π ≤ (𝐽𝑘))
318314, 316, 311, 317syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ≤ (𝐽𝑘))
319318adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ (𝐽𝑘))
320313rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
321310, 173ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑))
322309, 321sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
323322rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
324323adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
325 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
326 ioogtlb 43723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
327320, 324, 325, 326syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
328304, 313, 307, 319, 327lelttrd 11313 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π < 𝑠)
329304, 307, 328ltled 11303 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ 𝑠)
330322adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
331 iooltub 43738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
332320, 324, 325, 331syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
333 iccleub 13319 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
334314, 316, 321, 333syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
335334adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
336307, 330, 305, 332, 335ltletrd 11315 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < 𝑑)
337307, 305, 336ltled 11303 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠𝑑)
338304, 305, 307, 329, 337eliccd 43732 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (-π[,]𝑑))
339338ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
340 dfss3 3932 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
341339, 340sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
342303, 341feqresmpt 6911 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
343 simplll 773 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
344 simpllr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (-π(,)0))
34564fveq1i 6843 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠)
346345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
347 fvres 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π[,]𝑑) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
348347adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
349253, 255eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
350224, 349oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
351219recnd 11183 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℂ)
352241adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
353239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
354352halfcld 12398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
355354sincld 16012 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
356353, 355mulcld 11175 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
357248adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
358351, 352, 356, 202, 357dmdcan2d 11961 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
359188, 350, 3583eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
360346, 348, 3593eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
361343, 344, 338, 360syl21anc 836 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
362343, 344, 338, 358syl21anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
363362eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
364 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)))
365 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
366365fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
367366oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑊) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
368 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
369367, 368oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
370369adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
371 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
372 ovex 7390 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V
373372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V)
374364, 370, 371, 373fvmptd 6955 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
375 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
376 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
377376fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
378377oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
379368, 378oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380379adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
381 ovex 7390 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
382381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
383375, 380, 371, 382fvmptd 6955 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
384374, 383oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
385384eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
386385adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
387361, 363, 3863eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
388387mpteq2dva 5205 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
389342, 388eqtr2d 2777 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
390389oveq2d 7373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
39144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
392341, 309sstrd 3954 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
39322tgioo2 24166 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39422, 393dvres 25275 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(-π[,]𝑑)⟶ℂ) ∧ ((-π[,]𝑑) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
395391, 303, 309, 392, 394syl22anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
396 ioontr 43739 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
397396a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
398397reseq2d 5937 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
399390, 395, 3983eqtrrd 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
40015ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
40116ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
402265ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
403267ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
404 fourierdlem103.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
405404ad4ant14 750 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40662adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ (-π[,]π))
407341, 406sstrd 3954 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
408312rexrd 11205 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ*)
40953a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
410 0red 11158 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
41155ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < 0)
412322, 315, 410, 334, 411lelttrd 11313 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) < 0)
413408, 322, 409, 412gtnelicc 43728 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
41439ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑊 ∈ ℝ)
41511a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
416106ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π < 𝑑)
417 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
418 biid 260 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
419401, 264, 402, 403, 415, 315, 416, 406, 80, 73, 68, 127, 417, 289, 418fourierdlem50 44387 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
420419simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
421419simprd 496 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
422369cbvmptv 5218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
423379cbvmptv 5218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
424 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
425400, 401, 264, 402, 403, 405, 312, 322, 176, 407, 413, 414, 80, 420, 421, 422, 423, 424fourierdlem72 44409 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
426399, 425eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
427 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
428 eqid 2736 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
429 fourierdlem103.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
430429, 420eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
431 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
432431, 430jca 512 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
433 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
434433anbi2d 629 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
435 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
436 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
437436fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
438435, 437oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
439 raleq 3309 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
441440rexbidv 3175 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
442434, 441imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
443 fourierdlem103.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444442, 443vtoclg 3525 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
445430, 432, 444sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
446 nfv 1917 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁))
447 nfra1 3267 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
448446, 447nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
449 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
45011a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
451450, 16readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
45210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
453452, 16readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
454451, 453iccssred 13351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
455 ressxr 11199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
456454, 455sstrdi 3956 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
457456ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
458264, 402, 403fourierdlem15 44353 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
459 elfzofz 13588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
460430, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
461458, 460ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462457, 461sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
463462adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
464 fzofzp1 13669 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
465430, 464syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
466458, 465ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
467457, 466sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
468467adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
469 elioore 13294 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
470469adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
47110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
472415, 471, 401, 264, 402, 403, 460, 80fourierdlem13 44351 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
473472simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
474473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
475454ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
476475, 461sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
477476adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
478474, 477eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
479401, 312readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
480479adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
481472simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
482476, 401resubcld 11583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
483481, 482eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
484415, 471, 401, 264, 402, 403, 465, 80fourierdlem13 44351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
485484simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
486475, 466sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
487486, 401resubcld 11583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
488485, 487eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
489429eqcomi 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
490489fveq2i 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
491489oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
492491fveq2i 6845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
493490, 492oveq12i 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
494421, 493sseqtrdi 3994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
495483, 488, 312, 322, 176, 494fourierdlem10 44348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
496495simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
497483, 312, 401, 496leadd2dd 11770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
498497adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
499480rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
500401, 322readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
501500rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
502501adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
503 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
504 ioogtlb 43723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
505499, 502, 503, 504syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
506478, 480, 470, 498, 505lelttrd 11313 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
507474, 506eqbrtrd 5127 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
508500adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
509484simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
510509, 486eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
511510adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
512 iooltub 43738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
513499, 502, 503, 512syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
514495simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
515322, 488, 401, 514leadd2dd 11770 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
516515adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
517470, 508, 511, 513, 516ltletrd 11315 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
518509eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
519518adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
520517, 519breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
521463, 468, 470, 507, 520eliood 43726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
522521adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
523 rspa 3231 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
524449, 522, 523syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
525524ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
526448, 525ralrimi 3240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
527526ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
528527reximdv 3167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
529445, 528mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
530438raleqdv 3313 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
531530rexbidv 3175 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
532434, 531imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
533 fourierdlem103.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
534532, 533vtoclg 3525 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
535430, 432, 534sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
536 nfra1 3267 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
537446, 536nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53815, 45fssd 6686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
539 ssid 3966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
540539a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
541 ioossre 13325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
542541a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
54322, 393dvres 25275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
54445, 538, 540, 542, 543syl22anc 837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
545 ioontr 43739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
546545reseq2i 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
547546a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
548544, 547eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
549548fveq1d 6844 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
550 fvres 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
551549, 550sylan9eq 2796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
552551ad4ant14 750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
553552fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
554553adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
555 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
556521adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
557 rspa 3231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
558555, 556, 557syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
559554, 558eqbrtrd 5127 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
560559ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
561537, 560ralrimi 3240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
562561ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
563562reximdv 3167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
564535, 563mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
565415rexrd 11205 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
566565, 316, 310, 417fourierdlem8 44346 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
567126ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
568152, 308fssd 6686 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶ℝ)
569568ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
570 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ (-π[,]𝑑))
571153eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π = (𝐽‘0))
572154eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 = (𝐽𝑁))
573571, 572oveq12d 7375 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
574573adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
575570, 574eleqtrd 2840 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
576575adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
577 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
578 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
579578breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
580579cbvrabv 3417 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
581580supeq1i 9383 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
582567, 569, 576, 577, 581fourierdlem25 44363 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
583546a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584538ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
585539a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
586541a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
587391, 584, 585, 586, 543syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
588521ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
589 dfss3 3932 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
590588, 589sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
591590resabs1d 5968 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
592583, 587, 5913eqtr4rd 2787 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
593 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → 𝐶 ∈ (0..^𝑀))
594 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → (𝜑𝐶 ∈ (0..^𝑀)))
595438reseq2d 5937 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
596595, 438feq12d 6656 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
597434, 596imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
598 cncff 24256 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
599404, 598syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
600597, 599vtoclg 3525 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
601593, 594, 600sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
602432, 601syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
603602, 590fssresd 6709 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
604592, 603feq1dd 43374 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
605367, 378oveq12d 7375 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
606605cbvmptv 5218 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
607 biid 260 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ↔ ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
608 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
609608fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
610609breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
611610cbvralvw 3225 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
612607, 611anbi12i 627 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
613 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
614613fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
615614breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
616615cbvralvw 3225 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
617612, 616anbi12i 627 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
618262, 263, 12, 14, 62, 279, 280, 427, 428, 529, 564, 152, 176, 566, 582, 604, 606, 617fourierdlem80 44417 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
619358mpteq2dva 5205 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
620259, 619eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
621620oveq2d 7373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
622621dmeqd 5861 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
623 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
624 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
625 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
626 nfmpt1 5213 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
627624, 625, 626nfov 7387 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
628627nfdm 5906 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
629623, 628raleqf 3328 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
630622, 629syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
631621fveq1d 6844 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
632631fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
633632breq1d 5115 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
634633ralbidv 3174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
635630, 634bitrd 278 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
636635rexbidv 3175 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
637618, 636mpbird 256 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
638 eqid 2736 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
639 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
640 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
641 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
642641fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
643640, 642oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
644643sseq2d 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
645644cbvriotavw 7323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
646645fveq2i 6845 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
647646eqeq2i 2749 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
648647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
649 csbeq1 3858 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
650645, 649ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅
651650a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
652648, 651ifbieq1d 4510 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
653652mptru 1548 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
654653oveq1i 7367 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊)
655654oveq1i 7367 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘))
656655oveq1i 7367 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
657656a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
658 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
659645oveq1i 7367 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
660659fveq2i 6845 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
661660eqeq2i 2749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
662661a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
663 csbeq1 3858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
664645, 663ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿
665664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
666662, 665ifbieq1d 4510 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
667666mptru 1548 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
668667oveq1i 7367 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊)
669668oveq1i 7367 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1)))
670669oveq1i 7367 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
671670a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
672 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
673658, 671, 672ifbieq12d 4514 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
674639, 657, 673ifbieq12d 4514 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
675674cbvmptv 5218 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
67612, 14, 67, 126, 152, 153, 154, 176, 292, 298, 301, 302, 426, 637, 638, 675fourierdlem73 44410 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
677 breq2 5109 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
678677rexralbidv 3214 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
679678cbvralvw 3225 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
680676, 679sylib 217 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
681680adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
682 rphalfcl 12942 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
683682ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (𝑒 / 2) ∈ ℝ+)
684 breq2 5109 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
685684rexralbidv 3214 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
686685rspccva 3580 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
687681, 683, 686syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688345a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
689140a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (-π(,)𝑑) ⊆ (-π[,]𝑑))
690689sselda 3944 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π[,]𝑑))
691690, 347syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
692688, 691eqtr2d 2777 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑈𝑠) = (𝑂𝑠))
693692oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
694693itgeq2dv 25146 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
695694adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
696695fveq2d 6846 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
697 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
698696, 697eqbrtrd 5127 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
699698ex 413 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
700699adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
701700ralimdv 3166 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
702701reximdv 3167 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
703687, 702mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
704703adantr 481 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
705 nfv 1917 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0))
706 nfra1 3267 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
707705, 706nfan 1902 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708 nfv 1917 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
709707, 708nfan 1902 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
710 nfv 1917 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
711709, 710nfan 1902 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
712 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)))
713 eluznn 12843 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
714713adantll 712 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
715712, 714jca 512 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
716715adantllr 717 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
717 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
718713adantll 712 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
719 rspa 3231 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
720717, 718, 719syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
721716, 720jca 512 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
722721adantlr 713 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
723 nnre 12160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
724723rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
725724adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
72623a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
727 eluzelre 12774 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
728 1re 11155 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
729728rehalfcli 12402 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 2) ∈ ℝ
730729a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
731727, 730readdcld 11184 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
732731adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
733723adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
734727adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
735 eluzle 12776 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
736735adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
737 halfgt0 12369 . . . . . . . . . . . . . . . . . . . . . . 23 0 < (1 / 2)
738737a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
739729a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
740739, 734ltaddposd 11739 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
741738, 740mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
742733, 734, 732, 736, 741lelttrd 11313 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
743732ltpnfd 13042 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
744725, 726, 732, 742, 743eliood 43726 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
745744adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
746 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
747 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
748747fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
749748oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
750749adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
751750itgeq2dv 25146 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = (𝑘 + (1 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
752751fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
753752breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
754753rspcv 3577 . . . . . . . . . . . . . . . . . 18 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
755745, 746, 754sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
756755adantlll 716 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
757722, 756jca 512 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
758 fourierdlem103.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
759757, 758sylibr 233 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
76011a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → -π ∈ ℝ)
761 0red 11158 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ∈ ℝ)
762 ioossicc 13350 . . . . . . . . . . . . . . . . . . 19 (-π(,)0) ⊆ (-π[,]0)
763758biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
764 simp-4r 782 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (-π(,)0))
765763, 764syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ∈ (-π(,)0))
766762, 765sselid 3942 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (-π[,]0))
767 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
768763, 767syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝜑)
76943adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
77010rexri 11213 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ*
771 0re 11157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
772771, 10, 56ltleii 11278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ π
773 iooss2 13300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
774770, 772, 773mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (-π(,)π)
775 ioossicc 13350 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)π) ⊆ (-π[,]π)
776774, 775sstri 3953 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ⊆ (-π[,]π)
777776sseli 3940 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π[,]π))
778777adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
779769, 778ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
780768, 779sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
781 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
782763, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑘 ∈ ℕ)
783782nnred 12168 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℝ)
784729a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (1 / 2) ∈ ℝ)
785783, 784readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
786785adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑘 + (1 / 2)) ∈ ℝ)
787 elioore 13294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
788787adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
789786, 788remulcld 11185 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
790789resincld 16025 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
791780, 790remulcld 11185 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
792791recnd 11183 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
79352a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ∈ ℝ*)
79453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ∈ ℝ*)
795760leidd 11721 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ -π)
796 ioossre 13325 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)0) ⊆ ℝ
797796, 765sselid 3942 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 ∈ ℝ)
798793, 794, 765, 54syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 < 0)
799797, 761, 798ltled 11303 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ≤ 0)
800 ioossioo 13358 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ -π ∧ 𝑑 ≤ 0)) → (-π(,)𝑑) ⊆ (-π(,)0))
801793, 794, 795, 799, 800syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ⊆ (-π(,)0))
802 ioombl 24929 . . . . . . . . . . . . . . . . . . . 20 (-π(,)𝑑) ∈ dom vol
803802a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ∈ dom vol)
804 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
805804anbi2d 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
806 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → 𝑛 = 𝑘)
807806oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
808807oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
809808fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
810809oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
811810mpteq2dva 5205 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
812811eleq1d 2822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
813805, 812imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
814776a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
815 ioombl 24929 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ dom vol
816815a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
81743ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
818817adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
819 nnre 12160 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
820 readdcl 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
821819, 729, 820sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
822821adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
823 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
824214, 823sselid 3942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
825822, 824remulcld 11185 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
826825resincld 16025 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
827826adantll 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
828818, 827remulcld 11185 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
829 fourierdlem103.g . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
830829a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
831 fourierdlem103.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
832831fvmpt2 6959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
833823, 826, 832syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
834833adantll 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
835834oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
836835mpteq2dva 5205 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
837830, 836eqtr2d 2777 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
83815adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
839 fourierdlem103.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ran 𝑉)
840839adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
84127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
84238adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
843819adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
844265adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
845267adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
846269adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
847271adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
848273adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
849 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
850 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹) = (ℝ D 𝐹)
851599adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
852 fourierdlem103.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
853852adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
854 fourierdlem103.b . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
855854adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
856264, 838, 840, 841, 842, 40, 41, 42, 843, 831, 829, 844, 845, 846, 847, 848, 80, 849, 850, 851, 853, 855fourierdlem88 44425 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
857837, 856eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
858814, 816, 828, 857iblss 25169 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
859813, 858chvarvv 2002 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
860768, 782, 859syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
861801, 803, 791, 860iblss 25169 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (-π(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
862765, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → -π < 𝑑)
863760, 797, 862ltled 11303 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ 𝑑)
864761leidd 11721 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ≤ 0)
865 ioossioo 13358 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ 𝑑 ∧ 0 ≤ 0)) → (𝑑(,)0) ⊆ (-π(,)0))
866793, 794, 863, 864, 865syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ⊆ (-π(,)0))
867 ioombl 24929 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)0) ∈ dom vol
868867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ∈ dom vol)
869866, 868, 791, 860iblss 25169 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (𝑑(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
870760, 761, 766, 792, 861, 869itgsplitioo 25202 . . . . . . . . . . . . . . . . 17 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
871801sselda 3944 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π(,)0))
872871, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
873872, 861itgcl 25148 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
874866sselda 3944 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)0)) → 𝑠 ∈ (-π(,)0))
875874, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
876875, 869itgcl 25148 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
877873, 876addcomd 11357 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
878870, 877eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
879878fveq2d 6846 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
880876, 873addcld 11174 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
881880abscld 15321 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
882876abscld 15321 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
883873abscld 15321 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
884882, 883readdcld 11184 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
885 simp-5r 784 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
886763, 885syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
887886rpred 12957 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
888876, 873abstrid 15341 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
889 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
890763, 889syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
891763simprd 496 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
892882, 883, 887, 890, 891lt2halvesd 12401 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
893881, 884, 887, 888, 892lelttrd 11313 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
894879, 893eqbrtrd 5127 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
895759, 894syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
896895ex 413 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
897711, 896ralrimi 3240 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
898897ex 413 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
899898reximdva 3165 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
900704, 899mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
901 negpilt0 43504 . . . . . . . . . . . . . 14 -π < 0
90211, 771, 10lttri 11281 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
903901, 56, 902mp2an 690 . . . . . . . . . . . . 13 -π < π
90411, 10, 903ltleii 11278 . . . . . . . . . . . 12 -π ≤ π
905904a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
906264fourierdlem2 44340 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
907265, 906syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
908267, 907mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
909908simpld 495 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
910 elmapi 8787 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
911909, 910syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
912911ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
91316adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
914912, 913resubcld 11583 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
915914, 80fmptd 7062 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
91680a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
917 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
918917oveq1d 7372 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
919918adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
920265nnnn0d 12473 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
921 nn0uz 12805 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
922920, 921eleqtrdi 2848 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
923 eluzfz1 13448 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
924922, 923syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
925911, 924ffvelcdmd 7036 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
926925, 16resubcld 11583 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
927916, 919, 924, 926fvmptd 6955 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
928908simprd 496 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
929928simpld 495 . . . . . . . . . . . . . 14 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
930929simpld 495 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
931930oveq1d 7372 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
932450recnd 11183 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
93316recnd 11183 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
934932, 933pncand 11513 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
935927, 931, 9343eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
936450, 452, 16, 264, 849, 265, 267, 80fourierdlem14 44352 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
937849fourierdlem2 44340 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
938265, 937syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
939936, 938mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
940939simprd 496 . . . . . . . . . . . . 13 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
941940simpld 495 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) = -π ∧ (𝑄𝑀) = π))
942941simprd 496 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
943940simprd 496 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
944943r19.21bi 3234 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
94515adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
946849, 265, 936fourierdlem15 44353 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
947946adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
948 elfzofz 13588 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
949948adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
950947, 949ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
951 fzofzp1 13669 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
952951adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
953947, 952ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
95416adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
955 ffn 6668 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
956909, 910, 9553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
957 fvelrnb 6903 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
958956, 957syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
959839, 958mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
960 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
961960adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
962933subidd 11500 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
963962ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
964961, 963eqtr2d 2777 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
965964ex 413 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
966965reximdva 3165 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
967959, 966mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
96880elrnmpt 5911 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
969771, 968ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
970967, 969sylibr 233 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
971849, 265, 936, 970fourierdlem12 44350 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
972911adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
973972, 949ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
974973, 954resubcld 11583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
97580fvmpt2 6959 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
976949, 974, 975syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
977976oveq1d 7372 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
978973recnd 11183 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
979933adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
980978, 979npcand 11516 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
981977, 980eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
982 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
983982oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
984983cbvmptv 5218 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
98580, 984eqtr4i 2767 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
986985a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
987 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
988987oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
989988adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
990972, 952ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
991990, 954resubcld 11583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
992986, 989, 952, 991fvmptd 6955 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
993992oveq1d 7372 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
994990recnd 11183 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
995994, 979npcand 11516 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
996993, 995eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
997981, 996oveq12d 7375 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
998997reseq2d 5937 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
999997oveq1d 7372 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
1000269, 998, 9993eltr4d 2853 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
100128adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
100239adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
1003945, 950, 953, 954, 971, 1000, 1001, 1002, 40fourierdlem40 44378 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
1004 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
100544a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
10061004, 1005fssd 6686 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1007404, 598, 10063syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1008 eqid 2736 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
100916, 264, 15, 839, 27, 39, 40, 265, 267, 271, 80, 849, 850, 1007, 854, 1008fourierdlem75 44412 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
1010 eqid 2736 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
101116, 264, 15, 839, 28, 38, 40, 265, 267, 273, 80, 849, 850, 599, 852, 1010fourierdlem74 44411 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1012 fveq2 6842 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1013 oveq1 7364 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
10141013fveq2d 6846 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
10151012, 1014oveq12d 7375 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
10161015cbvmptv 5218 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1017450, 452, 905, 180, 265, 915, 935, 942, 944, 1003, 1009, 1011, 1016fourierdlem70 44407 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1018 eqid 2736 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1019 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10201019fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10211020breq1d 5115 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10221021cbvralvw 3225 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10231022ralbii 3096 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
102410233anbi3i 1159 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10251024anbi1i 624 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10261025anbi1i 624 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10271026anbi1i 624 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
102815, 16, 28, 39, 40, 41, 42, 831, 829, 1017, 856, 1018, 1027fourierdlem87 44424 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1029 iftrue 4492 . . . . . . . . . . . . . . . 16 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10301029negeqd 11395 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
10311030adantl 482 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
103252a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ∈ ℝ*)
103353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
1034 rpre 12923 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10351034renegcld 11582 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 ∈ ℝ)
10361035adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ ℝ)
10371034adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
103810rehalfcli 12402 . . . . . . . . . . . . . . . . . 18 (π / 2) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
104010a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1041 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1042 halfpos 12383 . . . . . . . . . . . . . . . . . . . 20 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
104310, 1042ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < π ↔ (π / 2) < π)
104456, 1043mpbi 229 . . . . . . . . . . . . . . . . . 18 (π / 2) < π
10451044a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10461037, 1039, 1040, 1041, 1045lelttrd 11313 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10471037, 1040ltnegd 11733 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 < π ↔ -π < -𝑐))
10481046, 1047mpbid 231 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π < -𝑐)
1049 rpgt0 12927 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10501034lt0neg2d 11725 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 < 𝑐 ↔ -𝑐 < 0))
10511049, 1050mpbid 231 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 < 0)
10521051adantr 481 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 < 0)
10531032, 1033, 1036, 1048, 1052eliood 43726 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ (-π(,)0))
10541031, 1053eqeltrd 2838 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1055 iffalse 4495 . . . . . . . . . . . . . . . 16 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
10561055negeqd 11395 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -(π / 2))
10571038renegcli 11462 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
10581057rexri 11213 . . . . . . . . . . . . . . . . . 18 -(π / 2) ∈ ℝ*
105952, 53, 10583pm3.2i 1339 . . . . . . . . . . . . . . . . 17 (-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*)
10601038, 10ltnegi 11699 . . . . . . . . . . . . . . . . . . 19 ((π / 2) < π ↔ -π < -(π / 2))
10611044, 1060mpbi 229 . . . . . . . . . . . . . . . . . 18 -π < -(π / 2)
1062 2pos 12256 . . . . . . . . . . . . . . . . . . . 20 0 < 2
106310, 101, 56, 1062divgt0ii 12072 . . . . . . . . . . . . . . . . . . 19 0 < (π / 2)
1064 lt0neg2 11662 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
10651038, 1064ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < (π / 2) ↔ -(π / 2) < 0)
10661063, 1065mpbi 229 . . . . . . . . . . . . . . . . . 18 -(π / 2) < 0
10671061, 1066pm3.2i 471 . . . . . . . . . . . . . . . . 17 (-π < -(π / 2) ∧ -(π / 2) < 0)
1068 elioo3g 13293 . . . . . . . . . . . . . . . . 17 (-(π / 2) ∈ (-π(,)0) ↔ ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*) ∧ (-π < -(π / 2) ∧ -(π / 2) < 0)))
10691059, 1067, 1068mpbir2an 709 . . . . . . . . . . . . . . . 16 -(π / 2) ∈ (-π(,)0)
10701069a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -(π / 2) ∈ (-π(,)0))
10711056, 1070eqeltrd 2838 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10721071adantl 482 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10731054, 1072pm2.61dan 811 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
107410733ad2ant2 1134 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1075 ioombl 24929 . . . . . . . . . . . . . . 15 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol
10761075a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol)
1077 simpr 485 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10781076, 1077jca 512 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1079 ioossicc 13350 . . . . . . . . . . . . . . . . 17 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0)
10801079a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0))
108111a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
108210a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
10831037, 1040, 1046ltled 11303 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ π)
10841037, 1040lenegd 11734 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 ≤ π ↔ -π ≤ -𝑐))
10851083, 1084mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -𝑐)
10861030eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ≤ (π / 2) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10871086adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10881085, 1087breqtrd 5131 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
108911, 1057, 1061ltleii 11278 . . . . . . . . . . . . . . . . . . . 20 -π ≤ -(π / 2)
10901089a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -(π / 2))
10911056eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 𝑐 ≤ (π / 2) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10921091adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10931090, 1092breqtrd 5131 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10941088, 1093pm2.61dan 811 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1095772a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 ≤ π)
1096 iccss 13332 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∧ 0 ≤ π)) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10971081, 1082, 1094, 1095, 1096syl22anc 837 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10981080, 1097sstrd 3954 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π))
1099796, 1073sselid 3942 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
1100 0red 11158 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
1101 rpge0 12928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℝ+ → 0 ≤ 𝑐)
11021101adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ 𝑐)
11031041iftrued 4494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
11041102, 1103breqtrrd 5133 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1105771, 1038, 1063ltleii 11278 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (π / 2)
1106 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → ¬ 𝑐 ≤ (π / 2))
11071106iffalsed 4497 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
11081105, 1107breqtrrid 5143 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11091104, 1108pm2.61dan 811 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11101038a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
11111034, 1110ifcld 4532 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
11121111le0neg2d 11727 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ↔ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0))
11131109, 1112mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0)
1114 volioo 24933 . . . . . . . . . . . . . . . . . 18 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0) → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11151099, 1100, 1113, 1114syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
1116 0cn 11147 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
11171116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℂ)
11181111recnd 11183 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
11191117, 1118subnegd 11519 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11201118addid2d 11356 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11211115, 1119, 11203eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1122 min1 13108 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11231034, 1038, 1122sylancl 586 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11241121, 1123eqbrtrd 5127 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)
11251098, 1124jca 512 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11261125adantr 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
1127 sseq1 3969 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (𝑢 ⊆ (-π[,]π) ↔ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π)))
1128 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (vol‘𝑢) = (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)))
11291128breq1d 5115 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11301127, 1129anbi12d 631 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)))
1131 itgeq1 25137 . . . . . . . . . . . . . . . . . 18 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11321131fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11331132breq1d 5115 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11341133ralbidv 3174 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11351130, 1134imbi12d 344 . . . . . . . . . . . . . 14 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
11361135rspcva 3579 . . . . . . . . . . . . 13 (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11371078, 1126, 1136sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
113811373adant1 1130 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1139 oveq1 7364 . . . . . . . . . . . . . . . 16 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (𝑑(,)0) = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0))
11401139itgeq1d 44188 . . . . . . . . . . . . . . 15 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11411140fveq2d 6846 . . . . . . . . . . . . . 14 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11421141breq1d 5115 . . . . . . . . . . . . 13 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11431142ralbidv 3174 . . . . . . . . . . . 12 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11441143rspcev 3581 . . . . . . . . . . 11 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0) ∧ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11451074, 1138, 1144syl2anc 584 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11461145rexlimdv3a 3156 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11471028, 1146mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1148900, 1147r19.29a 3159 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
11491148ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1150 nnex 12159 . . . . . . . . 9 ℕ ∈ V
11511150mptex 7173 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V
11521151a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V)
1153 eqidd 2737 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠))
1154777adantl 482 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1155779ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1156777adantl 482 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1157 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1158 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11591157, 1158eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11601159nnred 12168 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1161729a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11621160, 1161readdcld 11184 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11631162adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1164214, 1156sselid 3942 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11651163, 1164remulcld 11185 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11661165resincld 16025 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11671156, 1166, 832syl2anc 584 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11681167adantlll 716 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11691160adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11701169adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑛 ∈ ℝ)
1171 1red 11156 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 1 ∈ ℝ)
11721171rehalfcld 12400 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (1 / 2) ∈ ℝ)
11731170, 1172readdcld 11184 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1174214, 1154sselid 3942 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11751173, 1174remulcld 11185 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11761175resincld 16025 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11771168, 1176eqeltrd 2838 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) ∈ ℝ)
11781155, 1177remulcld 11185 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1179829fvmpt2 6959 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11801154, 1178, 1179syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1181 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11821181oveq1d 7372 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11831182fveq2d 6846 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11841183ad2antlr 725 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11851168, 1184eqtrd 2776 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11861185oveq2d 7373 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11871180, 1186eqtrd 2776 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11881187itgeq2dv 25146 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1189 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1190810itgeq2dv 25146 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11911190eleq1d 2822 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1192805, 1191imbi12d 344 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1193779adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1194 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11951194, 777, 826syl2an 596 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11961193, 1195remulcld 11185 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11971196, 858itgcl 25148 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11981192, 1197chvarvv 2002 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11991153, 1188, 1189, 1198fvmptd 6955 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑘) = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
12009, 2, 1152, 1199, 1198clim0c 15389 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
12011149, 1200mpbird 256 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0)
12021150mptex 7173 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π)) ∈ V
12036, 1202eqeltri 2834 . . . . . 6 𝐸 ∈ V
12041203a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
12051150mptex 7173 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
12061205a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
1207 picn 25816 . . . . . . 7 π ∈ ℂ
12081207a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1209 eqidd 2737 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1210 eqidd 2737 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1211 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
121210a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
12131209, 1210, 1211, 1212fvmptd 6955 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12141213adantl 482 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12159, 2, 1206, 1208, 1214climconst 15425 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1216771, 56gtneii 11267 . . . . . 6 π ≠ 0
12171216a1i 11 . . . . 5 (𝜑 → π ≠ 0)
121816adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
121928adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
122039adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1221838, 1218, 1219, 1220, 40, 41, 42, 843, 831, 829fourierdlem67 44404 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
12221221adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝐺:(-π[,]π)⟶ℝ)
1223814sselda 3944 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
12241222, 1223ffvelcdmd 7036 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) ∈ ℝ)
12251221ffvelcdmda 7035 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
12261221feqmptd 6910 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
12271226, 856eqeltrrd 2839 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1228814, 816, 1225, 1227iblss 25169 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ (𝐺𝑠)) ∈ 𝐿1)
12291224, 1228itgcl 25148 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ)
1230 eqid 2736 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
12311230fvmpt2 6959 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12321194, 1229, 1231syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12331232, 1229eqeltrd 2838 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1234 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1235 eqid 2736 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
12361235fvmpt2 6959 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12371234, 10, 1236sylancl 586 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12381207a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ∈ ℂ)
12391216a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ≠ 0)
12401238, 1239jca 512 . . . . . . . 8 (𝑛 ∈ ℕ → (π ∈ ℂ ∧ π ≠ 0))
1241 eldifsn 4747 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
12421240, 1241sylibr 233 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
12431237, 1242eqeltrd 2838 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12441243adantl 482 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12451207a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
12461216a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
12471229, 1245, 1246divcld 11931 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
12486fvmpt2 6959 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12491194, 1247, 1248syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12501232eqcomd 2742 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛))
12511237eqcomd 2742 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12521251adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12531250, 1252oveq12d 7375 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12541249, 1253eqtrd 2776 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12553, 4, 5, 8, 9, 2, 1201, 1204, 1215, 1217, 1233, 1244, 1254climdivf 43843 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12561207, 1216div0i 11889 . . . . 5 (0 / π) = 0
12571256a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12581255, 1257breqtrd 5131 . . 3 (𝜑𝐸 ⇝ 0)
1259 fourierdlem103.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12601150mptex 7173 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12611259, 1260eqeltri 2834 . . . 4 𝑍 ∈ V
12621261a1i 11 . . 3 (𝜑𝑍 ∈ V)
12631150mptex 7173 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V
12641263a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V)
1265 limccl 25239 . . . . . 6 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
12661265, 38sselid 3942 . . . . 5 (𝜑𝑊 ∈ ℂ)
12671266halfcld 12398 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℂ)
1268 eqidd 2737 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) = (𝑚 ∈ ℕ ↦ (𝑊 / 2)))
1269 eqidd 2737 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑊 / 2) = (𝑊 / 2))
12709eqcomi 2745 . . . . . . . 8 (ℤ‘1) = ℕ
12711270eleq2i 2829 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12721271biimpi 215 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12731272adantl 482 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12741267adantr 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑊 / 2) ∈ ℂ)
12751268, 1269, 1273, 1274fvmptd 6955 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) = (𝑊 / 2))
12761, 2, 1264, 1267, 1275climconst 15425 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ⇝ (𝑊 / 2))
12771247, 6fmptd 7062 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12781277adantr 481 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12791278, 1273ffvelcdmd 7036 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12801275, 1274eqeltrd 2838 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) ∈ ℂ)
12811275oveq2d 7373 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑊 / 2)))
1282815a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ∈ dom vol)
128352a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → -π ∈ ℝ*)
1284 0red 11158 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ)
12851284rexrd 11205 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ*)
1286 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π(,)0))
1287 iooltub 43738 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π(,)0)) → 𝑠 < 0)
12881283, 1285, 1286, 1287syl3anc 1371 . . . . . . . . . . . 12 (𝑠 ∈ (-π(,)0) → 𝑠 < 0)
1289787, 1288ltned 11291 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ≠ 0)
12901289neneqd 2948 . . . . . . . . . 10 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 = 0)
1291 velsn 4602 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12921290, 1291sylnibr 328 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 ∈ {0})
1293777, 1292eldifd 3921 . . . . . . . 8 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12941293ssriv 3948 . . . . . . 7 (-π(,)0) ⊆ ((-π[,]π) ∖ {0})
12951294a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ⊆ ((-π[,]π) ∖ {0}))
1296 fourierdlem103.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1297787adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
1298 0red 11158 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 0 ∈ ℝ)
1299787, 1284, 1288ltled 11303 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → 𝑠 ≤ 0)
13001299adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ≤ 0)
13011297, 1298, 1300lensymd 11306 . . . . . . 7 ((𝜑𝑠 ∈ (-π(,)0)) → ¬ 0 < 𝑠)
13021301iffalsed 4497 . . . . . 6 ((𝜑𝑠 ∈ (-π(,)0)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
1303 eqid 2736 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
130411a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
1305 0red 11158 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
130611, 771, 901ltleii 11278 . . . . . . . . 9 -π ≤ 0
13071306a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ≤ 0)
1308 eqid 2736 . . . . . . . 8 (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
13091296, 1194, 1303, 1304, 1305, 1307, 1308dirkeritg 44333 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)))
1310 ubicc2 13382 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → 0 ∈ (-π[,]0))
131152, 53, 1306, 1310mp3an 1461 . . . . . . . . . 10 0 ∈ (-π[,]0)
1312 oveq1 7364 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1313239, 244div0i 11889 . . . . . . . . . . . . . . . . 17 (0 / 2) = 0
13141313a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (0 / 2) = 0)
13151312, 1314eqtrd 2776 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1316 oveq2 7365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
1317 elfzelz 13441 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
13181317zcnd 12608 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
13191318mul01d 11354 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
13201316, 1319sylan9eq 2796 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
13211320fveq2d 6846 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1322 sin0 16031 . . . . . . . . . . . . . . . . . . . . 21 (sin‘0) = 0
13231322a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘0) = 0)
13241321, 1323eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13251324oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
1326 0red 11158 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1327 1red 11156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
13281317zred 12607 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
132999a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 < 1)
1330 elfzle1 13444 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
13311326, 1327, 1328, 1329, 1330ltletrd 11315 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
13321331gt0ne0d 11719 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
13331318, 1332div0d 11930 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
13341333adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13351325, 1334eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13361335sumeq2dv 15588 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1337 fzfi 13877 . . . . . . . . . . . . . . . . . . 19 (1...𝑛) ∈ Fin
13381337olci 864 . . . . . . . . . . . . . . . . . 18 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1339 sumz 15607 . . . . . . . . . . . . . . . . . 18 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
13401338, 1339ax-mp 5 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (1...𝑛)0 = 0
13411340a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)0 = 0)
13421336, 1341eqtrd 2776 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13431315, 1342oveq12d 7375 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1344 00id 11330 . . . . . . . . . . . . . . 15 (0 + 0) = 0
13451344a1i 11 . . . . . . . . . . . . . 14 (𝑠 = 0 → (0 + 0) = 0)
13461343, 1345eqtrd 2776 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13471346oveq1d 7372 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13481256a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → (0 / π) = 0)
13491347, 1348eqtrd 2776 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1350771elexi 3464 . . . . . . . . . . 11 0 ∈ V
13511349, 1308, 1350fvmpt 6948 . . . . . . . . . 10 (0 ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13521311, 1351ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
1353 lbicc2 13381 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → -π ∈ (-π[,]0))
135452, 53, 1306, 1353mp3an 1461 . . . . . . . . . . 11 -π ∈ (-π[,]0)
1355 oveq1 7364 . . . . . . . . . . . . . 14 (𝑠 = -π → (𝑠 / 2) = (-π / 2))
1356 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑠 = -π → (𝑘 · 𝑠) = (𝑘 · -π))
13571356fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑠 = -π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · -π)))
13581357oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑠 = -π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · -π)) / 𝑘))
13591358sumeq2sdv 15589 . . . . . . . . . . . . . 14 (𝑠 = -π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘))
13601355, 1359oveq12d 7375 . . . . . . . . . . . . 13 (𝑠 = -π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)))
13611360oveq1d 7372 . . . . . . . . . . . 12 (𝑠 = -π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
1362 ovex 7390 . . . . . . . . . . . 12 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) ∈ V
13631361, 1308, 1362fvmpt 6948 . . . . . . . . . . 11 (-π ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
13641354, 1363ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π)
1365 mulneg12 11593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℂ ∧ π ∈ ℂ) → (-𝑘 · π) = (𝑘 · -π))
13661318, 1207, 1365sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → (-𝑘 · π) = (𝑘 · -π))
13671366eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) = (-𝑘 · π))
13681367oveq1d 7372 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = ((-𝑘 · π) / π))
13691318negcld 11499 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℂ)
13701207a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
13711216a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ≠ 0)
13721369, 1370, 1371divcan4d 11937 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((-𝑘 · π) / π) = -𝑘)
13731368, 1372eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = -𝑘)
13741317znegcld 12609 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℤ)
13751373, 1374eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) ∈ ℤ)
1376 negpicn 25819 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℂ
13771376a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → -π ∈ ℂ)
13781318, 1377mulcld 11175 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) ∈ ℂ)
1379 sineq0 25880 . . . . . . . . . . . . . . . . . 18 ((𝑘 · -π) ∈ ℂ → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13801378, 1379syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13811375, 1380mpbird 256 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · -π)) = 0)
13821381oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = (0 / 𝑘))
13831382, 1333eqtrd 2776 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = 0)
13841383sumeq2i 15584 . . . . . . . . . . . . 13 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0
13851384, 1340eqtri 2764 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = 0
13861385oveq2i 7368 . . . . . . . . . . 11 ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) = ((-π / 2) + 0)
13871386oveq1i 7367 . . . . . . . . . 10 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) = (((-π / 2) + 0) / π)
13881376, 239, 244divcli 11897 . . . . . . . . . . . . . 14 (-π / 2) ∈ ℂ
13891388addid1i 11342 . . . . . . . . . . . . 13 ((-π / 2) + 0) = (-π / 2)
1390 divneg 11847 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
13911207, 239, 244, 1390mp3an 1461 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
13921389, 1391eqtr4i 2767 . . . . . . . . . . . 12 ((-π / 2) + 0) = -(π / 2)
13931392oveq1i 7367 . . . . . . . . . . 11 (((-π / 2) + 0) / π) = (-(π / 2) / π)
13941038recni 11169 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
1395 divneg 11847 . . . . . . . . . . . . 13 (((π / 2) ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → -((π / 2) / π) = (-(π / 2) / π))
13961394, 1207, 1216, 1395mp3an 1461 . . . . . . . . . . . 12 -((π / 2) / π) = (-(π / 2) / π)
13971396eqcomi 2745 . . . . . . . . . . 11 (-(π / 2) / π) = -((π / 2) / π)
13981207, 239, 1207, 244, 1216divdiv32i 11910 . . . . . . . . . . . . 13 ((π / 2) / π) = ((π / π) / 2)
13991207, 1216dividi 11888 . . . . . . . . . . . . . 14 (π / π) = 1
14001399oveq1i 7367 . . . . . . . . . . . . 13 ((π / π) / 2) = (1 / 2)
14011398, 1400eqtri 2764 . . . . . . . . . . . 12 ((π / 2) / π) = (1 / 2)
14021401negeqi 11394 . . . . . . . . . . 11 -((π / 2) / π) = -(1 / 2)
14031393, 1397, 14023eqtri 2768 . . . . . . . . . 10 (((-π / 2) + 0) / π) = -(1 / 2)
14041364, 1387, 14033eqtri 2768 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = -(1 / 2)
14051352, 1404oveq12i 7369 . . . . . . . 8 (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2))
14061405a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2)))
1407 halfcn 12368 . . . . . . . . . 10 (1 / 2) ∈ ℂ
14081116, 1407subnegi 11480 . . . . . . . . 9 (0 − -(1 / 2)) = (0 + (1 / 2))
14091407addid2i 11343 . . . . . . . . 9 (0 + (1 / 2)) = (1 / 2)
14101408, 1409eqtri 2764 . . . . . . . 8 (0 − -(1 / 2)) = (1 / 2)
14111410a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (0 − -(1 / 2)) = (1 / 2))
14121309, 1406, 14113eqtrd 2780 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
141315, 16, 264, 265, 267, 839, 269, 271, 273, 40, 41, 42, 831, 829, 850, 599, 852, 854, 27, 38, 1282, 1295, 6, 1296, 39, 1302, 1412fourierdlem95 44432 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14141273, 1413syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14151259a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1416 fveq2 6842 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
14171416fveq1d 6844 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
14181417oveq2d 7373 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14191418adantr 481 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14201419itgeq2dv 25146 . . . . . . . 8 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14211420adantl 482 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
142215adantr 481 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
142316adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
14241423, 1297readdcld 11184 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑋 + 𝑠) ∈ ℝ)
14251422, 1424ffvelcdmd 7036 . . . . . . . . . 10 ((𝜑𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14261425adantlr 713 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14271296dirkerf 44328 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
14281427ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐷𝑛):ℝ⟶ℝ)
1429787adantl 482 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
14301428, 1429ffvelcdmd 7036 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14311426, 1430remulcld 11185 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
143215adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
143316adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1434214sseli 3940 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
14351434adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14361433, 1435readdcld 11184 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
14371432, 1436ffvelcdmd 7036 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14381437adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14391427ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
14401434adantl 482 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14411439, 1440ffvelcdmd 7036 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14421438, 1441remulcld 11185 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
144310a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
14441296dirkercncf 44338 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
14451444adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1446 eqid 2736 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14471304, 1443, 838, 1218, 264, 844, 845, 846, 847, 848, 80, 849, 1445, 1446fourierdlem84 44421 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1448814, 816, 1442, 1447iblss 25169 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
14491431, 1448itgrecl 25162 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
14501415, 1421, 1194, 1449fvmptd 6955 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14511450eqcomd 2742 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14521273, 1451syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14531281, 1414, 14523eqtrrd 2781 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)))
14541, 2, 1258, 1262, 1276, 1279, 1280, 1453climadd 15514 . 2 (𝜑𝑍 ⇝ (0 + (𝑊 / 2)))
14551267addid2d 11356 . 2 (𝜑 → (0 + (𝑊 / 2)) = (𝑊 / 2))
14561454, 1455breqtrd 5131 1 (𝜑𝑍 ⇝ (𝑊 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  csb 3855  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  cio 6446   Fn wfn 6491  wf 6492  cfv 6496   Isom wiso 6497  crio 7312  (class class class)co 7357  m cmap 8765  Fincfn 8883  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cz 12499  cuz 12763  +crp 12915  (,)cioo 13264  [,]cicc 13267  ...cfz 13424  ..^cfzo 13567   mod cmo 13774  chash 14230  abscabs 15119  cli 15366  Σcsu 15570  sincsin 15946  πcpi 15949  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  intcnt 22368  cnccncf 24239  volcvol 24827  𝐿1cibl 24981  citg 24982   lim climc 25226   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem112  44449
  Copyright terms: Public domain W3C validator