Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem103 Structured version   Visualization version   GIF version

Theorem fourierdlem103 46164
Description: The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem103.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem103.xre (𝜑𝑋 ∈ ℝ)
fourierdlem103.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem103.m (𝜑𝑀 ∈ ℕ)
fourierdlem103.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem103.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem103.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem103.fbdioo ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem103.fdvcn ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
fourierdlem103.fdvbd ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
fourierdlem103.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem103.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem103.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem103.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem103.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem103.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem103.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem103.z 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
fourierdlem103.e 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
fourierdlem103.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.w (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.a (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
fourierdlem103.b (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem103.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
fourierdlem103.o 𝑂 = (𝑈 ↾ (-π[,]𝑑))
fourierdlem103.t 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
fourierdlem103.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem103.j 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem103.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem103.1 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
fourierdlem103.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Assertion
Ref Expression
fourierdlem103 (𝜑𝑍 ⇝ (𝑊 / 2))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐶,𝑖,𝑡,𝑤,𝑧   𝐷,𝑖,𝑚,𝑠   𝑛,𝐸   𝑖,𝐹,𝑘,𝑙,𝑠,𝑡   𝑚,𝐹,𝑘   𝑤,𝐹,𝑧,𝑘,𝑠   𝑒,𝐺,𝑘,𝑠   𝑖,𝐺,𝑡   𝑖,𝐻,𝑠   𝑘,𝐽,𝑙,𝑠   𝑓,𝐽,𝑘   𝑖,𝐽,𝑡   𝑚,𝐽   𝑤,𝐽,𝑧   𝐾,𝑠   𝐿,𝑙,𝑠,𝑡   𝑘,𝑀,𝑙,𝑠,𝑖,𝑡   𝑚,𝑀,𝑝,𝑖   𝑖,𝑁,𝑘,𝑙,𝑠,𝑡   𝑒,𝑁,𝑙   𝑓,𝑁   𝑚,𝑁   𝑤,𝑁,𝑧   𝑒,𝑂,𝑙,𝑠,𝑘   𝑡,𝑂   𝑄,𝑙,𝑠,𝑖,𝑡   𝑄,𝑝   𝑅,𝑙,𝑠,𝑡   𝑆,𝑠   𝑇,𝑓   𝑈,𝑑,𝑘,𝑠,𝑙   𝑈,𝑛,𝑘,𝑠   𝑖,𝑉,𝑘,𝑠   𝑉,𝑝   𝑡,𝑉   𝑖,𝑊,𝑘,𝑙,𝑠,𝑡   𝑚,𝑊,𝑛,𝑖   𝑤,𝑊,𝑧   𝑖,𝑋,𝑘,𝑙,𝑠,𝑡   𝑚,𝑋,𝑝   𝑤,𝑋,𝑧   𝑌,𝑠   𝑛,𝑍   𝑒,𝑑   𝑖,𝑑,𝜑,𝑡,𝑘,𝑙,𝑠   𝜑,𝑒   𝜒,𝑠   𝑓,𝑑,𝜑   𝑤,𝑑,𝑧,𝜑   𝑒,𝑛,𝜑   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐴(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐵(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐶(𝑒,𝑓,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝐷(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑛,𝑝,𝑑,𝑙)   𝑃(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑄(𝑧,𝑤,𝑒,𝑓,𝑘,𝑚,𝑛,𝑑)   𝑅(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑆(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑇(𝑧,𝑤,𝑡,𝑒,𝑖,𝑘,𝑚,𝑛,𝑠,𝑝,𝑑,𝑙)   𝑈(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑚,𝑝)   𝐸(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)   𝐹(𝑒,𝑓,𝑛,𝑝,𝑑)   𝐺(𝑧,𝑤,𝑓,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐻(𝑧,𝑤,𝑡,𝑒,𝑓,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐽(𝑒,𝑛,𝑝,𝑑)   𝐾(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝐿(𝑧,𝑤,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑)   𝑀(𝑧,𝑤,𝑒,𝑓,𝑛,𝑑)   𝑁(𝑛,𝑝,𝑑)   𝑂(𝑧,𝑤,𝑓,𝑖,𝑚,𝑛,𝑝,𝑑)   𝑉(𝑧,𝑤,𝑒,𝑓,𝑚,𝑛,𝑑,𝑙)   𝑊(𝑒,𝑓,𝑝,𝑑)   𝑋(𝑒,𝑓,𝑛,𝑑)   𝑌(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑛,𝑝,𝑑,𝑙)   𝑍(𝑧,𝑤,𝑡,𝑒,𝑓,𝑖,𝑘,𝑚,𝑠,𝑝,𝑑,𝑙)

Proof of Theorem fourierdlem103
Dummy variables 𝑏 𝑟 𝑐 𝑢 𝑗 𝑦 𝑥 𝑣 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (ℤ‘1) = (ℤ‘1)
2 1zzd 12645 . . 3 (𝜑 → 1 ∈ ℤ)
3 nfv 1911 . . . . 5 𝑛𝜑
4 nfmpt1 5255 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
5 nfmpt1 5255 . . . . 5 𝑛(𝑛 ∈ ℕ ↦ π)
6 fourierdlem103.e . . . . . 6 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
7 nfmpt1 5255 . . . . . 6 𝑛(𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
86, 7nfcxfr 2900 . . . . 5 𝑛𝐸
9 nnuz 12918 . . . . 5 ℕ = (ℤ‘1)
10 pire 26514 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
1110renegcli 11567 . . . . . . . . . . . . . . . 16 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ)
13 elioore 13413 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (-π(,)0) → 𝑑 ∈ ℝ)
1413adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ ℝ)
15 fourierdlem103.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶ℝ)
16 fourierdlem103.xre . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ ℝ)
17 ioossre 13444 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑋(,)+∞) ⊆ ℝ
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
1915, 18fssresd 6775 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
20 ioosscn 13445 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋(,)+∞) ⊆ ℂ
2120a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
22 eqid 2734 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 pnfxr 11312 . . . . . . . . . . . . . . . . . . . . . . 23 +∞ ∈ ℝ*
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → +∞ ∈ ℝ*)
2516ltpnfd 13160 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 < +∞)
2622, 24, 16, 25lptioo1cn 45601 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
27 fourierdlem103.y . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
2819, 21, 26, 27limcrecl 45584 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 ∈ ℝ)
29 ioossre 13444 . . . . . . . . . . . . . . . . . . . . . . 23 (-∞(,)𝑋) ⊆ ℝ
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (-∞(,)𝑋) ⊆ ℝ)
3115, 30fssresd 6775 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)):(-∞(,)𝑋)⟶ℝ)
32 ioosscn 13445 . . . . . . . . . . . . . . . . . . . . . 22 (-∞(,)𝑋) ⊆ ℂ
3332a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (-∞(,)𝑋) ⊆ ℂ)
34 mnfxr 11315 . . . . . . . . . . . . . . . . . . . . . . 23 -∞ ∈ ℝ*
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ ∈ ℝ*)
3616mnfltd 13163 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → -∞ < 𝑋)
3722, 35, 16, 36lptioo2cn 45600 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(-∞(,)𝑋)))
38 fourierdlem103.w . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
3931, 33, 37, 38limcrecl 45584 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑊 ∈ ℝ)
40 fourierdlem103.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
41 fourierdlem103.k . . . . . . . . . . . . . . . . . . . 20 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
42 fourierdlem103.u . . . . . . . . . . . . . . . . . . . 20 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
4315, 16, 28, 39, 40, 41, 42fourierdlem55 46116 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈:(-π[,]π)⟶ℝ)
44 ax-resscn 11209 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℂ
4544a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ℝ ⊆ ℂ)
4643, 45fssd 6753 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈:(-π[,]π)⟶ℂ)
4746adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℂ)
4811a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ∈ ℝ)
4910a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → π ∈ ℝ)
5048leidd 11826 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → -π ≤ -π)
51 0red 11261 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 ∈ ℝ)
5211rexri 11316 . . . . . . . . . . . . . . . . . . . . . 22 -π ∈ ℝ*
53 0xr 11305 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ*
54 iooltub 45462 . . . . . . . . . . . . . . . . . . . . . 22 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
5552, 53, 54mp3an12 1450 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 𝑑 < 0)
56 pipos 26516 . . . . . . . . . . . . . . . . . . . . . 22 0 < π
5756a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ (-π(,)0) → 0 < π)
5813, 51, 49, 55, 57lttrd 11419 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ (-π(,)0) → 𝑑 < π)
5913, 49, 58ltled 11406 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (-π(,)0) → 𝑑 ≤ π)
60 iccss 13451 . . . . . . . . . . . . . . . . . . 19 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -π ∧ 𝑑 ≤ π)) → (-π[,]𝑑) ⊆ (-π[,]π))
6148, 49, 50, 59, 60syl22anc 839 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (-π(,)0) → (-π[,]𝑑) ⊆ (-π[,]π))
6261adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ (-π[,]π))
6347, 62fssresd 6775 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ)
64 fourierdlem103.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑈 ↾ (-π[,]𝑑))
6564a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑈 ↾ (-π[,]𝑑)))
6665feq1d 6720 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑂:(-π[,]𝑑)⟶ℂ ↔ (𝑈 ↾ (-π[,]𝑑)):(-π[,]𝑑)⟶ℂ))
6763, 66mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂:(-π[,]𝑑)⟶ℂ)
68 fourierdlem103.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((♯‘𝑇) − 1)
6911elexi 3500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -π ∈ V
7069prid1 4766 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ {-π, 𝑑}
71 elun1 4191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π ∈ {-π, 𝑑} → -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
7270, 71ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 -π ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
73 fourierdlem103.t . . . . . . . . . . . . . . . . . . . . . . . 24 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
7472, 73eleqtrri 2837 . . . . . . . . . . . . . . . . . . . . . . 23 -π ∈ 𝑇
7574ne0ii 4349 . . . . . . . . . . . . . . . . . . . . . 22 𝑇 ≠ ∅
7675a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ≠ ∅)
77 prfi 9360 . . . . . . . . . . . . . . . . . . . . . . . . 25 {-π, 𝑑} ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {-π, 𝑑} ∈ Fin)
79 fzfi 14009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0...𝑀) ∈ Fin
80 fourierdlem103.q . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
8180rnmptfi 45113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8279, 81ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝑄 ∈ Fin
8382a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 9299 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin)
86 unfi 9209 . . . . . . . . . . . . . . . . . . . . . . . 24 (({-π, 𝑑} ∈ Fin ∧ (ran 𝑄 ∩ (-π(,)𝑑)) ∈ Fin) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8778, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ∈ Fin)
8873, 87eqeltrid 2842 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ Fin)
89 hashnncl 14401 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ Fin → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((♯‘𝑇) ∈ ℕ ↔ 𝑇 ≠ ∅))
9176, 90mpbird 257 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (♯‘𝑇) ∈ ℕ)
92 nnm1nn0 12564 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑇) ∈ ℕ → ((♯‘𝑇) − 1) ∈ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((♯‘𝑇) − 1) ∈ ℕ0)
9468, 93eqeltrid 2842 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℕ0)
9594adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ0)
96 0red 11261 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ)
97 1red 11259 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ∈ ℝ)
9895nn0red 12585 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℝ)
99 0lt1 11782 . . . . . . . . . . . . . . . . . . . 20 0 < 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 1)
101 2re 12337 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
102101a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ∈ ℝ)
10391nnred 12278 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (♯‘𝑇) ∈ ℝ)
104103adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘𝑇) ∈ ℝ)
105 ioogtlb 45447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑑 ∈ (-π(,)0)) → -π < 𝑑)
10652, 53, 105mp3an12 1450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (-π(,)0) → -π < 𝑑)
10748, 106ltned 11394 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑 ∈ (-π(,)0) → -π ≠ 𝑑)
108107adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≠ 𝑑)
109 hashprg 14430 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
11012, 14, 109syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ≠ 𝑑 ↔ (♯‘{-π, 𝑑}) = 2))
111108, 110mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) = 2)
112111eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 2 = (♯‘{-π, 𝑑}))
11388adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ∈ Fin)
114 ssun1 4187 . . . . . . . . . . . . . . . . . . . . . . . 24 {-π, 𝑑} ⊆ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
115114, 73sseqtrri 4032 . . . . . . . . . . . . . . . . . . . . . . 23 {-π, 𝑑} ⊆ 𝑇
116 hashssle 45248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇 ∈ Fin ∧ {-π, 𝑑} ⊆ 𝑇) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
117113, 115, 116sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (♯‘{-π, 𝑑}) ≤ (♯‘𝑇))
118112, 117eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 2 ≤ (♯‘𝑇))
119102, 104, 97, 118lesub1dd 11876 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (2 − 1) ≤ ((♯‘𝑇) − 1))
120 1e2m1 12390 . . . . . . . . . . . . . . . . . . . 20 1 = (2 − 1)
121119, 120, 683brtr4g 5181 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 1 ≤ 𝑁)
12296, 97, 98, 100, 121ltletrd 11418 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 0 < 𝑁)
123122gt0ne0d 11824 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ≠ 0)
12495, 123jca 511 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑁 ∈ ℕ0𝑁 ≠ 0))
125 elnnne0 12537 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
126124, 125sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑁 ∈ ℕ)
127 fourierdlem103.j . . . . . . . . . . . . . . . . . 18 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
12850adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ -π)
12948, 13, 106ltled 11406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑑 ∈ (-π(,)0) → -π ≤ 𝑑)
130129adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → -π ≤ 𝑑)
13112, 14, 12, 128, 130eliccd 45456 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ (-π[,]𝑑))
13214leidd 11826 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑑)
13312, 14, 14, 130, 132eliccd 45456 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 ∈ (-π[,]𝑑))
134131, 133jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)))
135 vex 3481 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
13669, 135prss 4824 . . . . . . . . . . . . . . . . . . . . 21 ((-π ∈ (-π[,]𝑑) ∧ 𝑑 ∈ (-π[,]𝑑)) ↔ {-π, 𝑑} ⊆ (-π[,]𝑑))
137134, 136sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ (-π[,]𝑑))
138 inss2 4245 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π(,)𝑑))
140 ioossicc 13469 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)𝑑) ⊆ (-π[,]𝑑)
141139, 140sstrdi 4007 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ (-π[,]𝑑))
142137, 141unssd 4201 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ (-π[,]𝑑))
14373, 142eqsstrid 4043 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ (-π[,]𝑑))
14474a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ 𝑇)
145135prid2 4767 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ {-π, 𝑑}
146 elun1 4191 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 ∈ {-π, 𝑑} → 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))))
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 𝑑 ∈ ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))
148147, 73eleqtrri 2837 . . . . . . . . . . . . . . . . . . 19 𝑑𝑇
149148a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑𝑇)
150113, 68, 127, 12, 14, 143, 144, 149fourierdlem52 46113 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → ((𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π) ∧ (𝐽𝑁) = 𝑑))
151150simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽:(0...𝑁)⟶(-π[,]𝑑) ∧ (𝐽‘0) = -π))
152151simpld 494 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
153151simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽‘0) = -π)
154150simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → (𝐽𝑁) = 𝑑)
155 elfzoelz 13695 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℤ)
156155zred 12719 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ ℝ)
157156adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℝ)
158157ltp1d 12195 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 < (𝑘 + 1))
15948, 13jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ (-π(,)0) → (-π ∈ ℝ ∧ 𝑑 ∈ ℝ))
16069, 135prss 4824 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ) ↔ {-π, 𝑑} ⊆ ℝ)
161159, 160sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ (-π(,)0) → {-π, 𝑑} ⊆ ℝ)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → {-π, 𝑑} ⊆ ℝ)
163 ioossre 13444 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)𝑑) ⊆ ℝ
164138, 163sstri 4004 . . . . . . . . . . . . . . . . . . . . . 22 (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (ran 𝑄 ∩ (-π(,)𝑑)) ⊆ ℝ)
166162, 165unssd 4201 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) ⊆ ℝ)
16773, 166eqsstrid 4043 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑇 ⊆ ℝ)
168113, 167, 127, 68fourierdlem36 46098 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
169168adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽 Isom < , < ((0...𝑁), 𝑇))
170 elfzofz 13711 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
171170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
172 fzofzp1 13799 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
173172adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
174 isorel 7345 . . . . . . . . . . . . . . . . 17 ((𝐽 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑘 ∈ (0...𝑁) ∧ (𝑘 + 1) ∈ (0...𝑁))) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
175169, 171, 173, 174syl12anc 837 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 < (𝑘 + 1) ↔ (𝐽𝑘) < (𝐽‘(𝑘 + 1))))
176158, 175mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) < (𝐽‘(𝑘 + 1)))
17743adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
178177, 62feqresmpt 6977 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑈 ↾ (-π[,]𝑑)) = (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)))
17962sselda 3994 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
18015, 16, 28, 39, 40fourierdlem9 46071 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐻:(-π[,]π)⟶ℝ)
181180ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐻:(-π[,]π)⟶ℝ)
182181, 179ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) ∈ ℝ)
18341fourierdlem43 46105 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾:(-π[,]π)⟶ℝ
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐾:(-π[,]π)⟶ℝ)
185184, 179ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) ∈ ℝ)
186182, 185remulcld 11288 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
18742fvmpt2 7026 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
188179, 186, 187syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
18911a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
19013adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ)
191 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]𝑑))
192 eliccre 45457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
193189, 190, 191, 192syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
194 0red 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 0 ∈ ℝ)
19552a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ*)
196190rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 ∈ ℝ*)
197 iccleub 13438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
198195, 196, 191, 197syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠𝑑)
19955adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < 0)
200193, 190, 194, 198, 199lelttrd 11416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < 0)
201193, 200ltned 11394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
202201adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≠ 0)
203202neneqd 2942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
204203iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))
205193, 194, 200ltnsymd 11407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
206205adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 0 < 𝑠)
207206iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
208207oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
209208oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
210204, 209eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
21115ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝐹:ℝ⟶ℝ)
21216ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑋 ∈ ℝ)
213 iccssre 13465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
21411, 10, 213mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (-π[,]π) ⊆ ℝ
215214, 179sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℝ)
216212, 215readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑋 + 𝑠) ∈ ℝ)
217211, 216ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
21839ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑊 ∈ ℝ)
219217, 218resubcld 11688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℝ)
220219, 215, 202redivcld 12092 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ ℝ)
221210, 220eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ)
22240fvmpt2 7026 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)) ∈ ℝ) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
223179, 221, 222syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
224223, 204, 2093eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐻𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
22510a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → π ∈ ℝ)
226225renegcld 11687 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ∈ ℝ)
227 iccgelb 13439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ*𝑑 ∈ ℝ*𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
228195, 196, 191, 227syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → -π ≤ 𝑠)
22958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑑 < π)
230193, 190, 225, 198, 229lelttrd 11416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 < π)
231193, 225, 230ltled 11406 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ≤ π)
232226, 225, 193, 228, 231eliccd 45456 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ (-π[,]π))
233201neneqd 2942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → ¬ 𝑠 = 0)
234233iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
235101a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℝ)
236193rehalfcld 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℝ)
237236resincld 16175 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℝ)
238235, 237remulcld 11288 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
239 2cn 12338 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ∈ ℂ
240239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
241193recnd 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
242241halfcld 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
243242sincld 16162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
244 2ne0 12367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 ≠ 0
245244a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ≠ 0)
246 fourierdlem44 46106 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
247232, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ≠ 0)
248240, 243, 245, 247mulne0d 11912 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
249193, 238, 248redivcld 12092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
250234, 249eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
25141fvmpt2 7026 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
252232, 250, 251syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑑 ∈ (-π(,)0) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
253252adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
254224, 253oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
255203iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
256255oveq2d 7446 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
257188, 254, 2563eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
258257mpteq2dva 5247 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ (𝑈𝑠)) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
25965, 178, 2583eqtrd 2778 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
260259adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
261260reseq1d 5998 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
26215adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
26316adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
264 fourierdlem103.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
265 fourierdlem103.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℕ)
266265adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑀 ∈ ℕ)
267 fourierdlem103.v . . . . . . . . . . . . . . . . . . 19 (𝜑𝑉 ∈ (𝑃𝑀))
268267adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑉 ∈ (𝑃𝑀))
269 fourierdlem103.fcn . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
270269adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
271 fourierdlem103.r . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
272271adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
273 fourierdlem103.l . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
274273adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
275106adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → -π < 𝑑)
27652a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → -π ∈ ℝ*)
27753a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 0 ∈ ℝ*)
27855adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 < 0)
279276, 14, 277, 278gtnelicc 45452 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ¬ 0 ∈ (-π[,]𝑑))
28039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑊 ∈ ℝ)
281 eqid 2734 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
282 eqid 2734 . . . . . . . . . . . . . . . . . 18 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
283 eqid 2734 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
284 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄𝑙) = (𝑄𝑖))
285 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
286285fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑄‘(𝑙 + 1)) = (𝑄‘(𝑖 + 1)))
287284, 286oveq12d 7448 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
288287sseq2d 4027 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
289288cbvriotavw 7397 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = (𝑖 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
290262, 263, 264, 266, 268, 270, 272, 274, 12, 14, 275, 62, 279, 280, 281, 80, 73, 68, 127, 282, 283, 289fourierdlem86 46147 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))) ∧ ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ)))
291290simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
292261, 291eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
293290simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) ∧ (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘))))
294293simpld 494 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
295260eqcomd 2740 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = 𝑂)
296295reseq1d 5998 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
297296oveq1d 7445 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
298294, 297eleqtrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽‘(𝑘 + 1))))
299293simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
300296oveq1d 7445 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)) = ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
301299, 300eleqtrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) ∈ ((𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) lim (𝐽𝑘)))
302 eqid 2734 . . . . . . . . . . . . . . 15 (ℝ D 𝑂) = (ℝ D 𝑂)
30367adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑂:(-π[,]𝑑)⟶ℂ)
30411a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ∈ ℝ)
30514ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ ℝ)
306 elioore 13413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) → 𝑠 ∈ ℝ)
307306adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ℝ)
30862, 214sstrdi 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) ⊆ ℝ)
309308adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ ℝ)
310152adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐽:(0...𝑁)⟶(-π[,]𝑑))
311310, 171ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ (-π[,]𝑑))
312309, 311sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ)
313312adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ)
31452a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
31514adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ)
316315rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 ∈ ℝ*)
317 iccgelb 13439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽𝑘) ∈ (-π[,]𝑑)) → -π ≤ (𝐽𝑘))
318314, 316, 311, 317syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ≤ (𝐽𝑘))
319318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ (𝐽𝑘))
320313rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) ∈ ℝ*)
321310, 173ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑))
322309, 321sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
323322rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
324323adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ*)
325 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
326 ioogtlb 45447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
327320, 324, 325, 326syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽𝑘) < 𝑠)
328304, 313, 307, 319, 327lelttrd 11416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π < 𝑠)
329304, 307, 328ltled 11406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → -π ≤ 𝑠)
330322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ∈ ℝ)
331 iooltub 45462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐽𝑘) ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ ℝ*𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
332320, 324, 325, 331syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < (𝐽‘(𝑘 + 1)))
333 iccleub 13438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ*𝑑 ∈ ℝ* ∧ (𝐽‘(𝑘 + 1)) ∈ (-π[,]𝑑)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
334314, 316, 321, 333syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
335334adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝐽‘(𝑘 + 1)) ≤ 𝑑)
336307, 330, 305, 332, 335ltletrd 11418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 < 𝑑)
337307, 305, 336ltled 11406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠𝑑)
338304, 305, 307, 329, 337eliccd 45456 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ (-π[,]𝑑))
339338ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
340 dfss3 3983 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑) ↔ ∀𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))𝑠 ∈ (-π[,]𝑑))
341339, 340sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
342303, 341feqresmpt 6977 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)))
343 simplll 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝜑)
344 simpllr 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑑 ∈ (-π(,)0))
34564fveq1i 6907 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠)
346345a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
347 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π[,]𝑑) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
348347adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
349253, 255eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝐾𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
350224, 349oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐻𝑠) · (𝐾𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
351219recnd 11286 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((𝐹‘(𝑋 + 𝑠)) − 𝑊) ∈ ℂ)
352241adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 𝑠 ∈ ℂ)
353239a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → 2 ∈ ℂ)
354352halfcld 12508 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑠 / 2) ∈ ℂ)
355354sincld 16162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (sin‘(𝑠 / 2)) ∈ ℂ)
356353, 355mulcld 11278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
357248adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
358351, 352, 356, 202, 357dmdcan2d 12070 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
359188, 350, 3583eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑈𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
360346, 348, 3593eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π[,]𝑑)) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
361343, 344, 338, 360syl21anc 838 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
362343, 344, 338, 358syl21anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
363362eqcomd 2740 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
364 eqidd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)))
365 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
366365fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (𝐹‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑠)))
367366oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → ((𝐹‘(𝑋 + 𝑡)) − 𝑊) = ((𝐹‘(𝑋 + 𝑠)) − 𝑊))
368 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠𝑡 = 𝑠)
369367, 368oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
370369adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
371 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
372 ovex 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V
373372a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) ∈ V)
374364, 370, 371, 373fvmptd 7022 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
375 eqidd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))))
376 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑠 → (𝑡 / 2) = (𝑠 / 2))
377376fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑠 → (sin‘(𝑡 / 2)) = (sin‘(𝑠 / 2)))
378377oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑠 → (2 · (sin‘(𝑡 / 2))) = (2 · (sin‘(𝑠 / 2))))
379368, 378oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑠 → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
380379adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∧ 𝑡 = 𝑠) → (𝑡 / (2 · (sin‘(𝑡 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
381 ovex 7463 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V
382381a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ V)
383375, 380, 371, 382fvmptd 7022 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
384374, 383oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)) = ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))))
385384eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
386385adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
387361, 363, 3863eqtrd 2778 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) → (𝑂𝑠) = (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
388387mpteq2dva 5247 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑂𝑠)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))))
389342, 388eqtr2d 2775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
390389oveq2d 7446 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) = (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
39144a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℂ)
392341, 309sstrd 4005 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)
39322tgioo2 24838 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
39422, 393dvres 25960 . . . . . . . . . . . . . . . . . 18 (((ℝ ⊆ ℂ ∧ 𝑂:(-π[,]𝑑)⟶ℂ) ∧ ((-π[,]𝑑) ⊆ ℝ ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
395391, 303, 309, 392, 394syl22anc 839 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))))
396 ioontr 45463 . . . . . . . . . . . . . . . . . . 19 ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))
397396a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))
398397reseq2d 5999 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))))) = ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))))
399390, 395, 3983eqtrrd 2779 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) = (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))))
40015ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
40116ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
402265ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
403267ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉 ∈ (𝑃𝑀))
404 fourierdlem103.fdvcn . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
405404ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))
40662adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (-π[,]𝑑) ⊆ (-π[,]π))
407341, 406sstrd 4005 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ (-π[,]π))
408312rexrd 11308 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽𝑘) ∈ ℝ*)
40953a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ*)
410 0red 11261 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 0 ∈ ℝ)
41155ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑑 < 0)
412322, 315, 410, 334, 411lelttrd 11416 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) < 0)
413408, 322, 409, 412gtnelicc 45452 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))))
41439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑊 ∈ ℝ)
41511a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ)
416106ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π < 𝑑)
417 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
418 biid 261 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑣 ∈ (0..^𝑀)) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑣)(,)(𝑄‘(𝑣 + 1)))))
419401, 264, 402, 403, 415, 315, 416, 406, 80, 73, 68, 127, 417, 289, 418fourierdlem50 46111 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀) ∧ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))))
420419simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) ∈ (0..^𝑀))
421419simprd 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
422369cbvmptv 5260 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡)) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠))
423379cbvmptv 5260 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
424 eqid 2734 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))
425400, 401, 264, 402, 403, 405, 312, 322, 176, 407, 413, 414, 80, 420, 421, 422, 423, 424fourierdlem72 46133 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / 𝑡))‘𝑠) · ((𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (𝑡 / (2 · (sin‘(𝑡 / 2)))))‘𝑠)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
426399, 425eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))) ∈ (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1)))–cn→ℂ))
427 eqid 2734 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
428 eqid 2734 . . . . . . . . . . . . . . . . 17 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
429 fourierdlem103.1 . . . . . . . . . . . . . . . . . . . 20 𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
430429, 420eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0..^𝑀))
431 simpll 767 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝜑)
432431, 430jca 511 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝜑𝐶 ∈ (0..^𝑀)))
433 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (𝑖 ∈ (0..^𝑀) ↔ 𝐶 ∈ (0..^𝑀)))
434433anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝐶 ∈ (0..^𝑀))))
435 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉𝑖) = (𝑉𝐶))
436 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 = 𝐶 → (𝑖 + 1) = (𝐶 + 1))
437436fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → (𝑉‘(𝑖 + 1)) = (𝑉‘(𝐶 + 1)))
438435, 437oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
439 raleq 3320 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) = ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
440438, 439syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
441440rexbidv 3176 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 ↔ ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
442434, 441imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)))
443 fourierdlem103.fbdioo . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
444442, 443vtoclg 3553 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤))
445430, 432, 444sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
446 nfv 1911 . . . . . . . . . . . . . . . . . . . . . 22 𝑡((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁))
447 nfra1 3281 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤
448446, 447nfan 1896 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
449 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)
45011a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → -π ∈ ℝ)
451450, 16readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (-π + 𝑋) ∈ ℝ)
45210a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → π ∈ ℝ)
453452, 16readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (π + 𝑋) ∈ ℝ)
454451, 453iccssred 13470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
455 ressxr 11302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ℝ ⊆ ℝ*
456454, 455sstrdi 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
457456ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ*)
458264, 402, 403fourierdlem15 46077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
459 elfzofz 13711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → 𝐶 ∈ (0...𝑀))
460430, 459syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ (0...𝑀))
461458, 460ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ((-π + 𝑋)[,](π + 𝑋)))
462457, 461sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ*)
463462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ*)
464 fzofzp1 13799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐶 ∈ (0..^𝑀) → (𝐶 + 1) ∈ (0...𝑀))
465430, 464syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐶 + 1) ∈ (0...𝑀))
466458, 465ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ((-π + 𝑋)[,](π + 𝑋)))
467457, 466sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
468467adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉‘(𝐶 + 1)) ∈ ℝ*)
469 elioore 13413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → 𝑡 ∈ ℝ)
470469adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ℝ)
47110a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → π ∈ ℝ)
472415, 471, 401, 264, 402, 403, 460, 80fourierdlem13 46075 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) = ((𝑉𝐶) − 𝑋) ∧ (𝑉𝐶) = (𝑋 + (𝑄𝐶))))
473472simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
474473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) = (𝑋 + (𝑄𝐶)))
475454ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
476475, 461sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉𝐶) ∈ ℝ)
477476adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) ∈ ℝ)
478474, 477eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ∈ ℝ)
479401, 312readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
480479adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ)
481472simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) = ((𝑉𝐶) − 𝑋))
482476, 401resubcld 11688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉𝐶) − 𝑋) ∈ ℝ)
483481, 482eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ∈ ℝ)
484415, 471, 401, 264, 402, 403, 465, 80fourierdlem13 46075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋) ∧ (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1)))))
485484simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) = ((𝑉‘(𝐶 + 1)) − 𝑋))
486475, 466sseldd 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) ∈ ℝ)
487486, 401resubcld 11688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑉‘(𝐶 + 1)) − 𝑋) ∈ ℝ)
488485, 487eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄‘(𝐶 + 1)) ∈ ℝ)
489429eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) = 𝐶
490489fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))) = (𝑄𝐶)
491489oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1) = (𝐶 + 1)
492491fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)) = (𝑄‘(𝐶 + 1))
493490, 492oveq12i 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))(,)(𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))) = ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1)))
494421, 493sseqtrdi 4045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝐶)(,)(𝑄‘(𝐶 + 1))))
495483, 488, 312, 322, 176, 494fourierdlem10 46072 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄𝐶) ≤ (𝐽𝑘) ∧ (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1))))
496495simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑄𝐶) ≤ (𝐽𝑘))
497483, 312, 401, 496leadd2dd 11875 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
498497adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) ≤ (𝑋 + (𝐽𝑘)))
499480rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) ∈ ℝ*)
500401, 322readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
501500rexrd 11308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
502501adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*)
503 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
504 ioogtlb 45447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
505499, 502, 503, 504syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽𝑘)) < 𝑡)
506478, 480, 470, 498, 505lelttrd 11416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄𝐶)) < 𝑡)
507474, 506eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑉𝐶) < 𝑡)
508500adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ)
509484simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑉‘(𝐶 + 1)) = (𝑋 + (𝑄‘(𝐶 + 1))))
510509, 486eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
511510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) ∈ ℝ)
512 iooltub 45462 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑋 + (𝐽𝑘)) ∈ ℝ* ∧ (𝑋 + (𝐽‘(𝑘 + 1))) ∈ ℝ*𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
513499, 502, 503, 512syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝐽‘(𝑘 + 1))))
514495simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝐽‘(𝑘 + 1)) ≤ (𝑄‘(𝐶 + 1)))
515322, 488, 401, 514leadd2dd 11875 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
516515adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝐽‘(𝑘 + 1))) ≤ (𝑋 + (𝑄‘(𝐶 + 1))))
517470, 508, 511, 513, 516ltletrd 11418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑋 + (𝑄‘(𝐶 + 1))))
518509eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
519518adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (𝑋 + (𝑄‘(𝐶 + 1))) = (𝑉‘(𝐶 + 1)))
520517, 519breqtrd 5173 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 < (𝑉‘(𝐶 + 1)))
521463, 468, 470, 507, 520eliood 45450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
522521adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
523 rspa 3245 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
524449, 522, 523syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
525524ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘(𝐹𝑡)) ≤ 𝑤))
526448, 525ralrimi 3254 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
527526ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
528527reximdv 3167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
529445, 528mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
530438raleqdv 3323 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
531530rexbidv 3176 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝐶 → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
532434, 531imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)))
533 fourierdlem103.fdvbd . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
534532, 533vtoclg 3553 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧))
535430, 432, 534sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
536 nfra1 3281 . . . . . . . . . . . . . . . . . . . . . 22 𝑡𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧
537446, 536nfan 1896 . . . . . . . . . . . . . . . . . . . . 21 𝑡(((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
53815, 45fssd 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐹:ℝ⟶ℂ)
539 ssid 4017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ℝ ⊆ ℝ
540539a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ℝ ⊆ ℝ)
541 ioossre 13444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ
542541a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
54322, 393dvres 25960 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((ℝ ⊆ ℂ ∧ 𝐹:ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
54445, 538, 540, 542, 543syl22anc 839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
545 ioontr 45463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))
546545reseq2i 5996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))
547546a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
548544, 547eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
549548fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡))
550 fvres 6925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
551549, 550sylan9eq 2794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
552551ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡) = ((ℝ D 𝐹)‘𝑡))
553552fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
554553adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) = (abs‘((ℝ D 𝐹)‘𝑡)))
555 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
556521adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → 𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
557 rspa 3245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
558555, 556, 557syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)
559554, 558eqbrtrd 5169 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) ∧ 𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
560559ex 412 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → (𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
561537, 560ralrimi 3254 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
562561ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
563562reximdv 3167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
564535, 563mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
565415rexrd 11308 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → -π ∈ ℝ*)
566565, 316, 310, 417fourierdlem8 46070 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ⊆ (-π[,]𝑑))
567126ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑁 ∈ ℕ)
568152, 308fssd 6753 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → 𝐽:(0...𝑁)⟶ℝ)
569568ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝐽:(0...𝑁)⟶ℝ)
570 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ (-π[,]𝑑))
571153eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → -π = (𝐽‘0))
572154eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑑 = (𝐽𝑁))
573571, 572oveq12d 7448 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
574573adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → (-π[,]𝑑) = ((𝐽‘0)[,](𝐽𝑁)))
575570, 574eleqtrd 2840 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
576575adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → 𝑟 ∈ ((𝐽‘0)[,](𝐽𝑁)))
577 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ¬ 𝑟 ∈ ran 𝐽)
578 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
579578breq1d 5157 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑘 → ((𝐽𝑗) < 𝑟 ↔ (𝐽𝑘) < 𝑟))
580579cbvrabv 3443 . . . . . . . . . . . . . . . . . . 19 {𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟} = {𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}
581580supeq1i 9484 . . . . . . . . . . . . . . . . . 18 sup({𝑗 ∈ (0..^𝑁) ∣ (𝐽𝑗) < 𝑟}, ℝ, < ) = sup({𝑘 ∈ (0..^𝑁) ∣ (𝐽𝑘) < 𝑟}, ℝ, < )
582567, 569, 576, 577, 581fourierdlem25 46087 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑟 ∈ (-π[,]𝑑)) ∧ ¬ 𝑟 ∈ ran 𝐽) → ∃𝑚 ∈ (0..^𝑁)𝑟 ∈ ((𝐽𝑚)(,)(𝐽‘(𝑚 + 1))))
583546a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
584538ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
585539a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ℝ ⊆ ℝ)
586541a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ℝ)
587391, 584, 585, 586, 543syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
588521ralrimiva 3143 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
589 dfss3 3983 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))) ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))𝑡 ∈ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
590588, 589sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))) ⊆ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1))))
591590resabs1d 6027 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = ((ℝ D 𝐹) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))
592583, 587, 5913eqtr4rd 2785 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))) = (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))))
593 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → 𝐶 ∈ (0..^𝑀))
594 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐶 ∈ (0..^𝑀)) → (𝜑𝐶 ∈ (0..^𝑀)))
595438reseq2d 5999 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝐶 → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) = ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))))
596595, 438feq12d 6724 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = 𝐶 → (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ ↔ ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
597434, 596imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝐶 → (((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) ↔ ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)))
598 cncff 24932 . . . . . . . . . . . . . . . . . . . . . . 23 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
599404, 598syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
600597, 599vtoclg 3553 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 ∈ (0..^𝑀) → ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ))
601593, 594, 600sylc 65 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐶 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
602432, 601syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → ((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))):((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))⟶ℝ)
603602, 590fssresd 6775 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (((ℝ D 𝐹) ↾ ((𝑉𝐶)(,)(𝑉‘(𝐶 + 1)))) ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
604592, 603feq1dd 6721 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1)))))):((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))⟶ℝ)
605367, 378oveq12d 7448 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2)))) = (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
606605cbvmptv 5260 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝑊) / (2 · (sin‘(𝑡 / 2))))) = (𝑠 ∈ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
607 biid 261 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ↔ ((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
608 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑡 → (𝐹𝑟) = (𝐹𝑡))
609608fveq2d 6910 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → (abs‘(𝐹𝑟)) = (abs‘(𝐹𝑡)))
610609breq1d 5157 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → ((abs‘(𝐹𝑟)) ≤ 𝑤 ↔ (abs‘(𝐹𝑡)) ≤ 𝑤))
611610cbvralvw 3234 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤)
612607, 611anbi12i 628 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ↔ (((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤))
613 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑡 → ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡))
614613fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑡 → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)))
615614breq1d 5157 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑡 → ((abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
616615cbvralvw 3234 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧 ↔ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧)
617612, 616anbi12i 628 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑟)) ≤ 𝑤) ∧ ∀𝑟 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑟)) ≤ 𝑧) ↔ ((((((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))(abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝐽𝑘))(,)(𝑋 + (𝐽‘(𝑘 + 1))))))‘𝑡)) ≤ 𝑧))
618262, 263, 12, 14, 62, 279, 280, 427, 428, 529, 564, 152, 176, 566, 582, 604, 606, 617fourierdlem80 46141 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏)
619358mpteq2dva 5247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑑 ∈ (-π(,)0)) → (𝑠 ∈ (-π[,]𝑑) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝑊) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
620259, 619eqtrd 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → 𝑂 = (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
621620oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (ℝ D 𝑂) = (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
622621dmeqd 5918 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))))
623 nfcv 2902 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D 𝑂)
624 nfcv 2902 . . . . . . . . . . . . . . . . . . . . . 22 𝑠
625 nfcv 2902 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 D
626 nfmpt1 5255 . . . . . . . . . . . . . . . . . . . . . 22 𝑠(𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))
627624, 625, 626nfov 7460 . . . . . . . . . . . . . . . . . . . . 21 𝑠(ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
628627nfdm 5964 . . . . . . . . . . . . . . . . . . . 20 𝑠dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))
629623, 628raleqf 3350 . . . . . . . . . . . . . . . . . . 19 (dom (ℝ D 𝑂) = dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2)))))) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
630622, 629syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏))
631621fveq1d 6908 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑑 ∈ (-π(,)0)) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠))
632631fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ (-π(,)0)) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)))
633632breq1d 5157 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ (abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
634633ralbidv 3175 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
635630, 634bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ (-π(,)0)) → (∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
636635rexbidv 3176 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ (-π(,)0)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))(abs‘((ℝ D (𝑠 ∈ (-π[,]𝑑) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝑊) / (2 · (sin‘(𝑠 / 2))))))‘𝑠)) ≤ 𝑏))
637618, 636mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑑 ∈ (-π(,)0)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
638 eqid 2734 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (𝑙 ∈ ℝ+ ↦ ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
639 eqeq1 2738 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑡 = (𝐽𝑘) ↔ 𝑠 = (𝐽𝑘)))
640 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄) = (𝑄𝑙))
641 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ( = 𝑙 → ( + 1) = (𝑙 + 1))
642641fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ( = 𝑙 → (𝑄‘( + 1)) = (𝑄‘(𝑙 + 1)))
643640, 642oveq12d 7448 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( = 𝑙 → ((𝑄)(,)(𝑄‘( + 1))) = ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
644643sseq2d 4027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( = 𝑙 → (((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))) ↔ ((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
645644cbvriotavw 7397 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))
646645fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))
647646eqeq2i 2747 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))))
648647a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))) ↔ (𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))))))
649 csbeq1 3910 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
650645, 649ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅
651650a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅)
652648, 651ifbieq1d 4554 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))))
653652mptru 1543 . . . . . . . . . . . . . . . . . . . . 21 if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) = if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘))))
654653oveq1i 7440 . . . . . . . . . . . . . . . . . . . 20 (if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) = (if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊)
655654oveq1i 7440 . . . . . . . . . . . . . . . . . . 19 ((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) = ((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘))
656655oveq1i 7440 . . . . . . . . . . . . . . . . . 18 (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2)))))
657656a1i 11 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))) = (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))))
658 eqeq1 2738 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑡 = (𝐽‘(𝑘 + 1)) ↔ 𝑠 = (𝐽‘(𝑘 + 1))))
659645oveq1i 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1) = ((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)
660659fveq2i 6909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))
661660eqeq2i 2747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)))
662661a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)) ↔ (𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1))))
663 csbeq1 3910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
664645, 663ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿
665664a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿)
666662, 665ifbieq1d 4554 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))))
667666mptru 1543 . . . . . . . . . . . . . . . . . . . . . 22 if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) = if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1)))))
668667oveq1i 7440 . . . . . . . . . . . . . . . . . . . . 21 (if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) = (if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊)
669668oveq1i 7440 . . . . . . . . . . . . . . . . . . . 20 ((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) = ((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1)))
670669oveq1i 7440 . . . . . . . . . . . . . . . . . . 19 (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2)))))
671670a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))) = (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))))
672 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝑂𝑡) = (𝑂𝑠))
673658, 671, 672ifbieq12d 4558 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)) = if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠)))
674639, 657, 673ifbieq12d 4558 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡))) = if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
675674cbvmptv 5260 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑡 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1))))), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑡 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘(( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) + 1)), ( ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄)(,)(𝑄‘( + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑡)))) = (𝑠 ∈ ((𝐽𝑘)[,](𝐽‘(𝑘 + 1))) ↦ if(𝑠 = (𝐽𝑘), (((if((𝐽𝑘) = (𝑄‘(𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝑅, (𝐹‘(𝑋 + (𝐽𝑘)))) − 𝑊) / (𝐽𝑘)) · ((𝐽𝑘) / (2 · (sin‘((𝐽𝑘) / 2))))), if(𝑠 = (𝐽‘(𝑘 + 1)), (((if((𝐽‘(𝑘 + 1)) = (𝑄‘((𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) + 1)), (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1)))) / 𝑖𝐿, (𝐹‘(𝑋 + (𝐽‘(𝑘 + 1))))) − 𝑊) / (𝐽‘(𝑘 + 1))) · ((𝐽‘(𝑘 + 1)) / (2 · (sin‘((𝐽‘(𝑘 + 1)) / 2))))), (𝑂𝑠))))
67612, 14, 67, 126, 152, 153, 154, 176, 292, 298, 301, 302, 426, 637, 638, 675fourierdlem73 46134 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒)
677 breq2 5151 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑎 → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
678677rexralbidv 3220 . . . . . . . . . . . . . . 15 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎))
679678cbvralvw 3234 . . . . . . . . . . . . . 14 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑒 ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
680676, 679sylib 218 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
681680adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎)
682 rphalfcl 13059 . . . . . . . . . . . . 13 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
683682ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (𝑒 / 2) ∈ ℝ+)
684 breq2 5151 . . . . . . . . . . . . . 14 (𝑎 = (𝑒 / 2) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
685684rexralbidv 3220 . . . . . . . . . . . . 13 (𝑎 = (𝑒 / 2) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ↔ ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
686685rspccva 3620 . . . . . . . . . . . 12 ((∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < 𝑎 ∧ (𝑒 / 2) ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
687681, 683, 686syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
688345a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑂𝑠) = ((𝑈 ↾ (-π[,]𝑑))‘𝑠))
689140a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑑 ∈ (-π(,)0)) → (-π(,)𝑑) ⊆ (-π[,]𝑑))
690689sselda 3994 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π[,]𝑑))
691690, 347syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈 ↾ (-π[,]𝑑))‘𝑠) = (𝑈𝑠))
692688, 691eqtr2d 2775 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → (𝑈𝑠) = (𝑂𝑠))
693692oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ (-π(,)0)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑂𝑠) · (sin‘(𝑙 · 𝑠))))
694693itgeq2dv 25831 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ (-π(,)0)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
695694adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠)
696695fveq2d 6910 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠))
697 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
698696, 697eqbrtrd 5169 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ (-π(,)0)) ∧ (abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
699698ex 412 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
700699adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ((abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
701700ralimdv 3166 . . . . . . . . . . . 12 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
702701reximdv 3167 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑂𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)))
703687, 702mpd 15 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
704703adantr 480 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
705 nfv 1911 . . . . . . . . . . . . . . 15 𝑘((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0))
706 nfra1 3281 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)
707705, 706nfan 1896 . . . . . . . . . . . . . 14 𝑘(((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
708 nfv 1911 . . . . . . . . . . . . . 14 𝑘 𝑗 ∈ ℕ
709707, 708nfan 1896 . . . . . . . . . . . . 13 𝑘((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ)
710 nfv 1911 . . . . . . . . . . . . 13 𝑘𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)
711709, 710nfan 1896 . . . . . . . . . . . 12 𝑘(((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
712 simpll 767 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)))
713 eluznn 12957 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
714713adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
715712, 714jca 511 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
716715adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ))
717 simpllr 776 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
718713adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
719 rspa 3245 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ∧ 𝑘 ∈ ℕ) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
720717, 718, 719syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
721716, 720jca 511 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
722721adantlr 715 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
723 nnre 12270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
724723rexrd 11308 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ*)
725724adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ*)
72623a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → +∞ ∈ ℝ*)
727 eluzelre 12886 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℝ)
728 1re 11258 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
729728rehalfcli 12512 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 2) ∈ ℝ
730729a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → (1 / 2) ∈ ℝ)
731727, 730readdcld 11287 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑗) → (𝑘 + (1 / 2)) ∈ ℝ)
732731adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ ℝ)
733723adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
734727adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
735 eluzle 12888 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
736735adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
737 halfgt0 12479 . . . . . . . . . . . . . . . . . . . . . . 23 0 < (1 / 2)
738737a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 0 < (1 / 2))
739729a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (1 / 2) ∈ ℝ)
740739, 734ltaddposd 11844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (0 < (1 / 2) ↔ 𝑘 < (𝑘 + (1 / 2))))
741738, 740mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 < (𝑘 + (1 / 2)))
742733, 734, 732, 736, 741lelttrd 11416 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 < (𝑘 + (1 / 2)))
743732ltpnfd 13160 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) < +∞)
744725, 726, 732, 742, 743eliood 45450 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
745744adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 + (1 / 2)) ∈ (𝑗(,)+∞))
746 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2))
747 oveq1 7437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = (𝑘 + (1 / 2)) → (𝑙 · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
748747fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = (𝑘 + (1 / 2)) → (sin‘(𝑙 · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
749748oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = (𝑘 + (1 / 2)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
750749adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑙 = (𝑘 + (1 / 2)) ∧ 𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
751750itgeq2dv 25831 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = (𝑘 + (1 / 2)) → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠 = ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
752751fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = (𝑘 + (1 / 2)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) = (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
753752breq1d 5157 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑘 + (1 / 2)) → ((abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
754753rspcv 3617 . . . . . . . . . . . . . . . . . 18 ((𝑘 + (1 / 2)) ∈ (𝑗(,)+∞) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
755745, 746, 754sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑗 ∈ ℕ ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
756755adantlll 718 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
757722, 756jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
758 fourierdlem103.ch . . . . . . . . . . . . . . 15 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
759757, 758sylibr 234 . . . . . . . . . . . . . 14 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜒)
76011a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → -π ∈ ℝ)
761 0red 11261 . . . . . . . . . . . . . . . . . 18 (𝜒 → 0 ∈ ℝ)
762 ioossicc 13469 . . . . . . . . . . . . . . . . . . 19 (-π(,)0) ⊆ (-π[,]0)
763758biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
764 simp-4r 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑑 ∈ (-π(,)0))
765763, 764syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑑 ∈ (-π(,)0))
766762, 765sselid 3992 . . . . . . . . . . . . . . . . . 18 (𝜒𝑑 ∈ (-π[,]0))
767 simp-5l 785 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝜑)
768763, 767syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝜑)
76943adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑈:(-π[,]π)⟶ℝ)
77010rexri 11316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ*
771 0re 11260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
772771, 10, 56ltleii 11381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ π
773 iooss2 13419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℝ* ∧ 0 ≤ π) → (-π(,)0) ⊆ (-π(,)π))
774770, 772, 773mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)0) ⊆ (-π(,)π)
775 ioossicc 13469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (-π(,)π) ⊆ (-π[,]π)
776774, 775sstri 4004 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)0) ⊆ (-π[,]π)
777776sseli 3990 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π[,]π))
778777adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
779769, 778ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
780768, 779sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
781 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑘 ∈ ℕ)
782763, 781syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑘 ∈ ℕ)
783782nnred 12278 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑘 ∈ ℝ)
784729a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (1 / 2) ∈ ℝ)
785783, 784readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 + (1 / 2)) ∈ ℝ)
786785adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → (𝑘 + (1 / 2)) ∈ ℝ)
787 elioore 13413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ℝ)
788787adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
789786, 788remulcld 11288 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑘 + (1 / 2)) · 𝑠) ∈ ℝ)
790789resincld 16175 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)0)) → (sin‘((𝑘 + (1 / 2)) · 𝑠)) ∈ ℝ)
791780, 790remulcld 11288 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
792791recnd 11286 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℂ)
79352a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ∈ ℝ*)
79453a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ∈ ℝ*)
795760leidd 11826 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ -π)
796 ioossre 13444 . . . . . . . . . . . . . . . . . . . . . 22 (-π(,)0) ⊆ ℝ
797796, 765sselid 3992 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 ∈ ℝ)
798793, 794, 765, 54syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑑 < 0)
799797, 761, 798ltled 11406 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑑 ≤ 0)
800 ioossioo 13477 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ -π ∧ 𝑑 ≤ 0)) → (-π(,)𝑑) ⊆ (-π(,)0))
801793, 794, 795, 799, 800syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ⊆ (-π(,)0))
802 ioombl 25613 . . . . . . . . . . . . . . . . . . . 20 (-π(,)𝑑) ∈ dom vol
803802a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (-π(,)𝑑) ∈ dom vol)
804 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ))
805804anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝜑𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
806 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → 𝑛 = 𝑘)
807806oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
808807oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
809808fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
810809oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 = 𝑘𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
811810mpteq2dva 5247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))))
812811eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑘 → ((𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1 ↔ (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1))
813805, 812imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1) ↔ ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)))
814776a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ⊆ (-π[,]π))
815 ioombl 25613 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)0) ∈ dom vol
816815a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (-π(,)0) ∈ dom vol)
81743ffvelcdmda 7103 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
818817adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
819 nnre 12270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
820 readdcl 11235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑛 + (1 / 2)) ∈ ℝ)
821819, 729, 820sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
822821adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
823 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
824214, 823sselid 3992 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
825822, 824remulcld 11288 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
826825resincld 16175 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
827826adantll 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
828818, 827remulcld 11288 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
829 fourierdlem103.g . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
830829a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))))
831 fourierdlem103.s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
832831fvmpt2 7026 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
833823, 826, 832syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
834833adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
835834oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
836835mpteq2dva 5247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
837830, 836eqtr2d 2775 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = 𝐺)
83815adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℝ⟶ℝ)
839 fourierdlem103.x . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋 ∈ ran 𝑉)
840839adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ran 𝑉)
84127adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
84238adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
843819adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
844265adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑀 ∈ ℕ)
845267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝑉 ∈ (𝑃𝑀))
846269adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
847271adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
848273adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
849 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
850 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D 𝐹) = (ℝ D 𝐹)
851599adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
852 fourierdlem103.a . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
853852adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))
854 fourierdlem103.b . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
855854adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))
856264, 838, 840, 841, 842, 40, 41, 42, 843, 831, 829, 844, 845, 846, 847, 848, 80, 849, 850, 851, 853, 855fourierdlem88 46149 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
857837, 856eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
858814, 816, 828, 857iblss 25854 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
859813, 858chvarvv 1995 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
860768, 782, 859syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑠 ∈ (-π(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
861801, 803, 791, 860iblss 25854 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (-π(,)𝑑) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
862765, 106syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → -π < 𝑑)
863760, 797, 862ltled 11406 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → -π ≤ 𝑑)
864761leidd 11826 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → 0 ≤ 0)
865 ioossioo 13477 . . . . . . . . . . . . . . . . . . . 20 (((-π ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (-π ≤ 𝑑 ∧ 0 ≤ 0)) → (𝑑(,)0) ⊆ (-π(,)0))
866793, 794, 863, 864, 865syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ⊆ (-π(,)0))
867 ioombl 25613 . . . . . . . . . . . . . . . . . . . 20 (𝑑(,)0) ∈ dom vol
868867a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑑(,)0) ∈ dom vol)
869866, 868, 791, 860iblss 25854 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑠 ∈ (𝑑(,)0) ↦ ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠)))) ∈ 𝐿1)
870760, 761, 766, 792, 861, 869itgsplitioo 25887 . . . . . . . . . . . . . . . . 17 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
871801sselda 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (-π(,)𝑑)) → 𝑠 ∈ (-π(,)0))
872871, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (-π(,)𝑑)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
873872, 861itgcl 25833 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
874866sselda 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ (𝑑(,)0)) → 𝑠 ∈ (-π(,)0))
875874, 791syldan 591 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ (𝑑(,)0)) → ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) ∈ ℝ)
876875, 869itgcl 25833 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
877873, 876addcomd 11460 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
878870, 877eqtrd 2774 . . . . . . . . . . . . . . . 16 (𝜒 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
879878fveq2d 6910 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
880876, 873addcld 11277 . . . . . . . . . . . . . . . . 17 (𝜒 → (∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℂ)
881880abscld 15471 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
882876abscld 15471 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
883873abscld 15471 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) ∈ ℝ)
884882, 883readdcld 11287 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ∈ ℝ)
885 simp-5r 786 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → 𝑒 ∈ ℝ+)
886763, 885syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑒 ∈ ℝ+)
887886rpred 13074 . . . . . . . . . . . . . . . 16 (𝜒𝑒 ∈ ℝ)
888876, 873abstrid 15491 . . . . . . . . . . . . . . . 16 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) ≤ ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)))
889 simplr 769 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
890763, 889syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
891763simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
892882, 883, 887, 890, 891lt2halvesd 12511 . . . . . . . . . . . . . . . 16 (𝜒 → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) + (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
893881, 884, 887, 888, 892lelttrd 11416 . . . . . . . . . . . . . . 15 (𝜒 → (abs‘(∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 + ∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)) < 𝑒)
894879, 893eqbrtrd 5169 . . . . . . . . . . . . . 14 (𝜒 → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
895759, 894syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
896895ex 412 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → (𝑘 ∈ (ℤ𝑗) → (abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
897711, 896ralrimi 3254 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) ∧ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
898897ex 412 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ 𝑗 ∈ ℕ) → (∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
899898reximdva 3165 . . . . . . . . 9 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → (∃𝑗 ∈ ℕ ∀𝑙 ∈ (𝑗(,)+∞)(abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘(𝑙 · 𝑠))) d𝑠) < (𝑒 / 2) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
900704, 899mpd 15 . . . . . . . 8 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ ∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
901 negpilt0 45230 . . . . . . . . . . . . . 14 -π < 0
90211, 771, 10lttri 11384 . . . . . . . . . . . . . 14 ((-π < 0 ∧ 0 < π) → -π < π)
903901, 56, 902mp2an 692 . . . . . . . . . . . . 13 -π < π
90411, 10, 903ltleii 11381 . . . . . . . . . . . 12 -π ≤ π
905904a1i 11 . . . . . . . . . . 11 (𝜑 → -π ≤ π)
906264fourierdlem2 46064 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
907265, 906syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
908267, 907mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
909908simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
910 elmapi 8887 . . . . . . . . . . . . . . 15 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
911909, 910syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶ℝ)
912911ffvelcdmda 7103 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
91316adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
914912, 913resubcld 11688 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
915914, 80fmptd 7133 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
91680a1i 11 . . . . . . . . . . . . 13 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
917 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
918917oveq1d 7445 . . . . . . . . . . . . . 14 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
919918adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
920265nnnn0d 12584 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
921 nn0uz 12917 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
922920, 921eleqtrdi 2848 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
923 eluzfz1 13567 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
924922, 923syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
925911, 924ffvelcdmd 7104 . . . . . . . . . . . . . 14 (𝜑 → (𝑉‘0) ∈ ℝ)
926925, 16resubcld 11688 . . . . . . . . . . . . 13 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
927916, 919, 924, 926fvmptd 7022 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
928908simprd 495 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
929928simpld 494 . . . . . . . . . . . . . 14 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
930929simpld 494 . . . . . . . . . . . . 13 (𝜑 → (𝑉‘0) = (-π + 𝑋))
931930oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
932450recnd 11286 . . . . . . . . . . . . 13 (𝜑 → -π ∈ ℂ)
93316recnd 11286 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℂ)
934932, 933pncand 11618 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
935927, 931, 9343eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) = -π)
936450, 452, 16, 264, 849, 265, 267, 80fourierdlem14 46076 . . . . . . . . . . . . . . 15 (𝜑𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀))
937849fourierdlem2 46064 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
938265, 937syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ ((𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
939936, 938mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
940939simprd 495 . . . . . . . . . . . . 13 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
941940simpld 494 . . . . . . . . . . . 12 (𝜑 → ((𝑄‘0) = -π ∧ (𝑄𝑀) = π))
942941simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑄𝑀) = π)
943940simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
944943r19.21bi 3248 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
94515adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
946849, 265, 936fourierdlem15 46077 . . . . . . . . . . . . . 14 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
947946adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
948 elfzofz 13711 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
949948adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
950947, 949ffvelcdmd 7104 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
951 fzofzp1 13799 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
952951adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
953947, 952ffvelcdmd 7104 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ (-π[,]π))
95416adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
955 ffn 6736 . . . . . . . . . . . . . . . . . 18 (𝑉:(0...𝑀)⟶ℝ → 𝑉 Fn (0...𝑀))
956909, 910, 9553syl 18 . . . . . . . . . . . . . . . . 17 (𝜑𝑉 Fn (0...𝑀))
957 fvelrnb 6968 . . . . . . . . . . . . . . . . 17 (𝑉 Fn (0...𝑀) → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
958956, 957syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋))
959839, 958mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋)
960 oveq1 7437 . . . . . . . . . . . . . . . . . . 19 ((𝑉𝑖) = 𝑋 → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
961960adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → ((𝑉𝑖) − 𝑋) = (𝑋𝑋))
962933subidd 11605 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋𝑋) = 0)
963962ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → (𝑋𝑋) = 0)
964961, 963eqtr2d 2775 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0...𝑀)) ∧ (𝑉𝑖) = 𝑋) → 0 = ((𝑉𝑖) − 𝑋))
965964ex 412 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) = 𝑋 → 0 = ((𝑉𝑖) − 𝑋)))
966965reximdva 3165 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑖 ∈ (0...𝑀)(𝑉𝑖) = 𝑋 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
967959, 966mpd 15 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
96880elrnmpt 5971 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋)))
969771, 968ax-mp 5 . . . . . . . . . . . . . 14 (0 ∈ ran 𝑄 ↔ ∃𝑖 ∈ (0...𝑀)0 = ((𝑉𝑖) − 𝑋))
970967, 969sylibr 234 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ran 𝑄)
971849, 265, 936, 970fourierdlem12 46074 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 0 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
972911adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
973972, 949ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
974973, 954resubcld 11688 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
97580fvmpt2 7026 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
976949, 974, 975syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
977976oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
978973recnd 11286 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
979933adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
980978, 979npcand 11621 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
981977, 980eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (𝑉𝑖))
982 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑖 → (𝑉𝑗) = (𝑉𝑖))
983982oveq1d 7445 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → ((𝑉𝑗) − 𝑋) = ((𝑉𝑖) − 𝑋))
984983cbvmptv 5260 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)) = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
98580, 984eqtr4i 2765 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
986985a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
987 fveq2 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
988987oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
989988adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
990972, 952ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
991990, 954resubcld 11688 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
992986, 989, 952, 991fvmptd 7022 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
993992oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋))
994990recnd 11286 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
995994, 979npcand 11621 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉‘(𝑖 + 1)) − 𝑋) + 𝑋) = (𝑉‘(𝑖 + 1)))
996993, 995eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) + 𝑋) = (𝑉‘(𝑖 + 1)))
997981, 996oveq12d 7448 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋)) = ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
998997reseq2d 5999 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) = (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))))
999997oveq1d 7445 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ) = (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
1000269, 998, 9993eltr4d 2853 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ (((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))) ∈ ((((𝑄𝑖) + 𝑋)(,)((𝑄‘(𝑖 + 1)) + 𝑋))–cn→ℂ))
100128adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑌 ∈ ℝ)
100239adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ ℝ)
1003945, 950, 953, 954, 971, 1000, 1001, 1002, 40fourierdlem40 46102 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
1004 id 22 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ)
100544a1i 11 . . . . . . . . . . . . . 14 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ℝ ⊆ ℂ)
10061004, 1005fssd 6753 . . . . . . . . . . . . 13 (((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1007404, 598, 10063syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
1008 eqid 2734 . . . . . . . . . . . 12 if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
100916, 264, 15, 839, 27, 39, 40, 265, 267, 271, 80, 849, 850, 1007, 854, 1008fourierdlem75 46136 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐵, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
1010 eqid 2734 . . . . . . . . . . . 12 if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) = if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1))))
101116, 264, 15, 839, 28, 38, 40, 265, 267, 273, 80, 849, 850, 599, 852, 1010fourierdlem74 46135 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉‘(𝑖 + 1)) = 𝑋, 𝐴, ((𝐿 − if((𝑉‘(𝑖 + 1)) < 𝑋, 𝑊, 𝑌)) / (𝑄‘(𝑖 + 1)))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1012 fveq2 6906 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
1013 oveq1 7437 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗 + 1) = (𝑖 + 1))
10141013fveq2d 6910 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄‘(𝑗 + 1)) = (𝑄‘(𝑖 + 1)))
10151012, 1014oveq12d 7448 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
10161015cbvmptv 5260 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑀) ↦ ((𝑄𝑗)(,)(𝑄‘(𝑗 + 1)))) = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1017450, 452, 905, 180, 265, 915, 935, 942, 944, 1003, 1009, 1011, 1016fourierdlem70 46131 . . . . . . . . . 10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
1018 eqid 2734 . . . . . . . . . 10 ((𝑒 / 3) / 𝑦) = ((𝑒 / 3) / 𝑦)
1019 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑠 → (𝐺𝑡) = (𝐺𝑠))
10201019fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (abs‘(𝐺𝑡)) = (abs‘(𝐺𝑠)))
10211020breq1d 5157 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑠 → ((abs‘(𝐺𝑡)) ≤ 𝑦 ↔ (abs‘(𝐺𝑠)) ≤ 𝑦))
10221021cbvralvw 3234 . . . . . . . . . . . . . . 15 (∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
10231022ralbii 3090 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦 ↔ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦)
102410233anbi3i 1158 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ↔ ((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦))
10251024anbi1i 624 . . . . . . . . . . . 12 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ↔ (((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol))
10261025anbi1i 624 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ↔ ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))))
10271026anbi1i 624 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑡 ∈ (-π[,]π)(abs‘(𝐺𝑡)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ) ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑦 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑦) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ ((𝑒 / 3) / 𝑦))) ∧ 𝑛 ∈ ℕ))
102815, 16, 28, 39, 40, 41, 42, 831, 829, 1017, 856, 1018, 1027fourierdlem87 46148 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → ∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
1029 iftrue 4536 . . . . . . . . . . . . . . . 16 (𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
10301029negeqd 11499 . . . . . . . . . . . . . . 15 (𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
10311030adantl 481 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -𝑐)
103252a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ∈ ℝ*)
103353a1i 11 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ∈ ℝ*)
1034 rpre 13040 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+𝑐 ∈ ℝ)
10351034renegcld 11687 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 ∈ ℝ)
10361035adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ ℝ)
10371034adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ∈ ℝ)
103810rehalfcli 12512 . . . . . . . . . . . . . . . . . 18 (π / 2) ∈ ℝ
10391038a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) ∈ ℝ)
104010a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → π ∈ ℝ)
1041 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ (π / 2))
1042 halfpos 12493 . . . . . . . . . . . . . . . . . . . 20 (π ∈ ℝ → (0 < π ↔ (π / 2) < π))
104310, 1042ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < π ↔ (π / 2) < π)
104456, 1043mpbi 230 . . . . . . . . . . . . . . . . . 18 (π / 2) < π
10451044a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (π / 2) < π)
10461037, 1039, 1040, 1041, 1045lelttrd 11416 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 < π)
10471037, 1040ltnegd 11838 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 < π ↔ -π < -𝑐))
10481046, 1047mpbid 232 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π < -𝑐)
1049 rpgt0 13044 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 < 𝑐)
10501034lt0neg2d 11830 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 < 𝑐 ↔ -𝑐 < 0))
10511049, 1050mpbid 232 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → -𝑐 < 0)
10521051adantr 480 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 < 0)
10531032, 1033, 1036, 1048, 1052eliood 45450 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 ∈ (-π(,)0))
10541031, 1053eqeltrd 2838 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1055 iffalse 4539 . . . . . . . . . . . . . . . 16 𝑐 ≤ (π / 2) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
10561055negeqd 11499 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = -(π / 2))
10571038renegcli 11567 . . . . . . . . . . . . . . . . . . 19 -(π / 2) ∈ ℝ
10581057rexri 11316 . . . . . . . . . . . . . . . . . 18 -(π / 2) ∈ ℝ*
105952, 53, 10583pm3.2i 1338 . . . . . . . . . . . . . . . . 17 (-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*)
10601038, 10ltnegi 11804 . . . . . . . . . . . . . . . . . . 19 ((π / 2) < π ↔ -π < -(π / 2))
10611044, 1060mpbi 230 . . . . . . . . . . . . . . . . . 18 -π < -(π / 2)
1062 2pos 12366 . . . . . . . . . . . . . . . . . . . 20 0 < 2
106310, 101, 56, 1062divgt0ii 12182 . . . . . . . . . . . . . . . . . . 19 0 < (π / 2)
1064 lt0neg2 11767 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
10651038, 1064ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 < (π / 2) ↔ -(π / 2) < 0)
10661063, 1065mpbi 230 . . . . . . . . . . . . . . . . . 18 -(π / 2) < 0
10671061, 1066pm3.2i 470 . . . . . . . . . . . . . . . . 17 (-π < -(π / 2) ∧ -(π / 2) < 0)
1068 elioo3g 13412 . . . . . . . . . . . . . . . . 17 (-(π / 2) ∈ (-π(,)0) ↔ ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -(π / 2) ∈ ℝ*) ∧ (-π < -(π / 2) ∧ -(π / 2) < 0)))
10691059, 1067, 1068mpbir2an 711 . . . . . . . . . . . . . . . 16 -(π / 2) ∈ (-π(,)0)
10701069a1i 11 . . . . . . . . . . . . . . 15 𝑐 ≤ (π / 2) → -(π / 2) ∈ (-π(,)0))
10711056, 1070eqeltrd 2838 . . . . . . . . . . . . . 14 𝑐 ≤ (π / 2) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10721071adantl 481 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
10731054, 1072pm2.61dan 813 . . . . . . . . . . . 12 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
107410733ad2ant2 1133 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0))
1075 ioombl 25613 . . . . . . . . . . . . . . 15 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol
10761075a1i 11 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol)
1077 simpr 484 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
10781076, 1077jca 511 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
1079 ioossicc 13469 . . . . . . . . . . . . . . . . 17 (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0)
10801079a1i 11 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0))
108111a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ∈ ℝ)
108210a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → π ∈ ℝ)
10831037, 1040, 1046ltled 11406 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 𝑐 ≤ π)
10841037, 1040lenegd 11839 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → (𝑐 ≤ π ↔ -π ≤ -𝑐))
10851083, 1084mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -𝑐)
10861030eqcomd 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ≤ (π / 2) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10871086adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -𝑐 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10881085, 1087breqtrd 5173 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
108911, 1057, 1061ltleii 11381 . . . . . . . . . . . . . . . . . . . 20 -π ≤ -(π / 2)
10901089a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -(π / 2))
10911056eqcomd 2740 . . . . . . . . . . . . . . . . . . . 20 𝑐 ≤ (π / 2) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10921091adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -(π / 2) = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10931090, 1092breqtrd 5173 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
10941088, 1093pm2.61dan 813 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → -π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1095772a1i 11 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → 0 ≤ π)
1096 iccss 13451 . . . . . . . . . . . . . . . . 17 (((-π ∈ ℝ ∧ π ∈ ℝ) ∧ (-π ≤ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∧ 0 ≤ π)) → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10971081, 1082, 1094, 1095, 1096syl22anc 839 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))[,]0) ⊆ (-π[,]π))
10981080, 1097sstrd 4005 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π))
1099796, 1073sselid 3992 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
1100 0red 11261 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℝ)
1101 rpge0 13045 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℝ+ → 0 ≤ 𝑐)
11021101adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ 𝑐)
11031041iftrued 4538 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = 𝑐)
11041102, 1103breqtrrd 5175 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1105771, 1038, 1063ltleii 11381 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ (π / 2)
1106 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → ¬ 𝑐 ≤ (π / 2))
11071106iffalsed 4541 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) = (π / 2))
11081105, 1107breqtrrid 5185 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ+ ∧ ¬ 𝑐 ≤ (π / 2)) → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11091104, 1108pm2.61dan 813 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → 0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11101038a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℝ+ → (π / 2) ∈ ℝ)
11111034, 1110ifcld 4576 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ)
11121111le0neg2d 11832 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ℝ+ → (0 ≤ if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ↔ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0))
11131109, 1112mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0)
1114 volioo 25617 . . . . . . . . . . . . . . . . . 18 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℝ ∧ 0 ∈ ℝ ∧ -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 0) → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11151099, 1100, 1113, 1114syl3anc 1370 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
1116 0cn 11250 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℂ
11171116a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → 0 ∈ ℂ)
11181111recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ ℂ)
11191117, 1118subnegd 11624 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 − -if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))))
11201118addlidd 11459 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ℝ+ → (0 + if(𝑐 ≤ (π / 2), 𝑐, (π / 2))) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
11211115, 1119, 11203eqtrd 2778 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) = if(𝑐 ≤ (π / 2), 𝑐, (π / 2)))
1122 min1 13227 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ ℝ ∧ (π / 2) ∈ ℝ) → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11231034, 1038, 1122sylancl 586 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ℝ+ → if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ≤ 𝑐)
11241121, 1123eqbrtrd 5169 . . . . . . . . . . . . . . 15 (𝑐 ∈ ℝ+ → (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)
11251098, 1124jca 511 . . . . . . . . . . . . . 14 (𝑐 ∈ ℝ+ → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11261125adantr 480 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
1127 sseq1 4020 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (𝑢 ⊆ (-π[,]π) ↔ (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π)))
1128 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (vol‘𝑢) = (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)))
11291128breq1d 5157 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((vol‘𝑢) ≤ 𝑐 ↔ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐))
11301127, 1129anbi12d 632 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) ↔ ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐)))
1131 itgeq1 25822 . . . . . . . . . . . . . . . . . 18 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11321131fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11331132breq1d 5157 . . . . . . . . . . . . . . . 16 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11341133ralbidv 3175 . . . . . . . . . . . . . . 15 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11351130, 1134imbi12d 344 . . . . . . . . . . . . . 14 (𝑢 = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ↔ (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
11361135rspcva 3619 . . . . . . . . . . . . 13 (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ∈ dom vol ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → (((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0) ⊆ (-π[,]π) ∧ (vol‘(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11371078, 1126, 1136sylc 65 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
113811373adant1 1129 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1139 oveq1 7437 . . . . . . . . . . . . . . . 16 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (𝑑(,)0) = (-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0))
11401139itgeq1d 45912 . . . . . . . . . . . . . . 15 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11411140fveq2d 6910 . . . . . . . . . . . . . 14 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
11421141breq1d 5157 . . . . . . . . . . . . 13 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → ((abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11431142ralbidv 3175 . . . . . . . . . . . 12 (𝑑 = -if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) → (∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11441143rspcev 3621 . . . . . . . . . . 11 ((-if(𝑐 ≤ (π / 2), 𝑐, (π / 2)) ∈ (-π(,)0) ∧ ∀𝑘 ∈ ℕ (abs‘∫(-if(𝑐 ≤ (π / 2), 𝑐, (π / 2))(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11451074, 1138, 1144syl2anc 584 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
11461145rexlimdv3a 3156 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑐) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
11471028, 1146mpd 15 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ (-π(,)0)∀𝑘 ∈ ℕ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
1148900, 1147r19.29a 3159 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
11491148ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒)
1150 nnex 12269 . . . . . . . . 9 ℕ ∈ V
11511150mptex 7242 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V
11521151a1i 11 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ∈ V)
1153 eqidd 2735 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠))
1154777adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1155779ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1156777adantl 481 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
1157 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1158 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑘 ∈ ℕ)
11591157, 1158eqeltrd 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℕ)
11601159nnred 12278 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
1161729a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 2) ∈ ℝ)
11621160, 1161readdcld 11287 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 + (1 / 2)) ∈ ℝ)
11631162adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1164214, 1156sselid 3992 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11651163, 1164remulcld 11288 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11661165resincld 16175 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11671156, 1166, 832syl2anc 584 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11681167adantlll 718 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
11691160adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → 𝑛 ∈ ℝ)
11701169adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑛 ∈ ℝ)
1171 1red 11259 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 1 ∈ ℝ)
11721171rehalfcld 12510 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (1 / 2) ∈ ℝ)
11731170, 1172readdcld 11287 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑛 + (1 / 2)) ∈ ℝ)
1174214, 1154sselid 3992 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
11751173, 1174remulcld 11288 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
11761175resincld 16175 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11771168, 1176eqeltrd 2838 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) ∈ ℝ)
11781155, 1177remulcld 11288 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
1179829fvmpt2 7026 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
11801154, 1178, 1179syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
1181 oveq1 7437 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
11821181oveq1d 7445 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
11831182fveq2d 6910 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11841183ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11851168, 1184eqtrd 2774 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝑆𝑠) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
11861185oveq2d 7446 . . . . . . . . . 10 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11871180, 1186eqtrd 2774 . . . . . . . . 9 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
11881187itgeq2dv 25831 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝑛 = 𝑘) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
1189 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1190810itgeq2dv 25831 . . . . . . . . . . 11 (𝑛 = 𝑘 → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
11911190eleq1d 2823 . . . . . . . . . 10 (𝑛 = 𝑘 → (∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ ↔ ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ))
1192805, 1191imbi12d 344 . . . . . . . . 9 (𝑛 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ) ↔ ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)))
1193779adantlr 715 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝑈𝑠) ∈ ℝ)
1194 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
11951194, 777, 826syl2an 596 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
11961193, 1195remulcld 11288 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
11971196, 858itgcl 25833 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11981192, 1197chvarvv 1995 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠 ∈ ℂ)
11991153, 1188, 1189, 1198fvmptd 7022 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑘) = ∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
12009, 2, 1152, 1199, 1198clim0c 15539 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(abs‘∫(-π(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < 𝑒))
12011149, 1200mpbird 257 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) ⇝ 0)
12021150mptex 7242 . . . . . . 7 (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π)) ∈ V
12036, 1202eqeltri 2834 . . . . . 6 𝐸 ∈ V
12041203a1i 11 . . . . 5 (𝜑𝐸 ∈ V)
12051150mptex 7242 . . . . . . 7 (𝑛 ∈ ℕ ↦ π) ∈ V
12061205a1i 11 . . . . . 6 (𝜑 → (𝑛 ∈ ℕ ↦ π) ∈ V)
1207 picn 26515 . . . . . . 7 π ∈ ℂ
12081207a1i 11 . . . . . 6 (𝜑 → π ∈ ℂ)
1209 eqidd 2735 . . . . . . . 8 (𝑚 ∈ ℕ → (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π))
1210 eqidd 2735 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑛 = 𝑚) → π = π)
1211 id 22 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
121210a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ → π ∈ ℝ)
12131209, 1210, 1211, 1212fvmptd 7022 . . . . . . 7 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12141213adantl 481 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑚) = π)
12159, 2, 1206, 1208, 1214climconst 15575 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ π) ⇝ π)
1216771, 56gtneii 11370 . . . . . 6 π ≠ 0
12171216a1i 11 . . . . 5 (𝜑 → π ≠ 0)
121816adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ ℝ)
121928adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑌 ∈ ℝ)
122039adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
1221838, 1218, 1219, 1220, 40, 41, 42, 843, 831, 829fourierdlem67 46128 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:(-π[,]π)⟶ℝ)
12221221adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝐺:(-π[,]π)⟶ℝ)
1223814sselda 3994 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ (-π[,]π))
12241222, 1223ffvelcdmd 7104 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐺𝑠) ∈ ℝ)
12251221ffvelcdmda 7103 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
12261221feqmptd 6976 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
12271226, 856eqeltrrd 2839 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
1228814, 816, 1225, 1227iblss 25854 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ (𝐺𝑠)) ∈ 𝐿1)
12291224, 1228itgcl 25833 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ)
1230 eqid 2734 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠) = (𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)
12311230fvmpt2 7026 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ∫(-π(,)0)(𝐺𝑠) d𝑠 ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12321194, 1229, 1231syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) = ∫(-π(,)0)(𝐺𝑠) d𝑠)
12331232, 1229eqeltrd 2838 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) ∈ ℂ)
1234 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
1235 eqid 2734 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ π) = (𝑛 ∈ ℕ ↦ π)
12361235fvmpt2 7026 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ π ∈ ℝ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12371234, 10, 1236sylancl 586 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) = π)
12381207a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ∈ ℂ)
12391216a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ → π ≠ 0)
12401238, 1239jca 511 . . . . . . . 8 (𝑛 ∈ ℕ → (π ∈ ℂ ∧ π ≠ 0))
1241 eldifsn 4790 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
12421240, 1241sylibr 234 . . . . . . 7 (𝑛 ∈ ℕ → π ∈ (ℂ ∖ {0}))
12431237, 1242eqeltrd 2838 . . . . . 6 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12441243adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ π)‘𝑛) ∈ (ℂ ∖ {0}))
12451207a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
12461216a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → π ≠ 0)
12471229, 1245, 1246divcld 12040 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ)
12486fvmpt2 7026 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) ∈ ℂ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12491194, 1247, 1248syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))
12501232eqcomd 2740 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)(𝐺𝑠) d𝑠 = ((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛))
12511237eqcomd 2740 . . . . . . . 8 (𝑛 ∈ ℕ → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12521251adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → π = ((𝑛 ∈ ℕ ↦ π)‘𝑛))
12531250, 1252oveq12d 7448 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫(-π(,)0)(𝐺𝑠) d𝑠 / π) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12541249, 1253eqtrd 2774 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (((𝑛 ∈ ℕ ↦ ∫(-π(,)0)(𝐺𝑠) d𝑠)‘𝑛) / ((𝑛 ∈ ℕ ↦ π)‘𝑛)))
12553, 4, 5, 8, 9, 2, 1201, 1204, 1215, 1217, 1233, 1244, 1254climdivf 45567 . . . 4 (𝜑𝐸 ⇝ (0 / π))
12561207, 1216div0i 11998 . . . . 5 (0 / π) = 0
12571256a1i 11 . . . 4 (𝜑 → (0 / π) = 0)
12581255, 1257breqtrd 5173 . . 3 (𝜑𝐸 ⇝ 0)
1259 fourierdlem103.z . . . . 5 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)
12601150mptex 7242 . . . . 5 (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠) ∈ V
12611259, 1260eqeltri 2834 . . . 4 𝑍 ∈ V
12621261a1i 11 . . 3 (𝜑𝑍 ∈ V)
12631150mptex 7242 . . . . 5 (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V
12641263a1i 11 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ∈ V)
1265 limccl 25924 . . . . . 6 ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ⊆ ℂ
12661265, 38sselid 3992 . . . . 5 (𝜑𝑊 ∈ ℂ)
12671266halfcld 12508 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℂ)
1268 eqidd 2735 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) = (𝑚 ∈ ℕ ↦ (𝑊 / 2)))
1269 eqidd 2735 . . . . 5 (((𝜑𝑛 ∈ (ℤ‘1)) ∧ 𝑚 = 𝑛) → (𝑊 / 2) = (𝑊 / 2))
12709eqcomi 2743 . . . . . . . 8 (ℤ‘1) = ℕ
12711270eleq2i 2830 . . . . . . 7 (𝑛 ∈ (ℤ‘1) ↔ 𝑛 ∈ ℕ)
12721271biimpi 216 . . . . . 6 (𝑛 ∈ (ℤ‘1) → 𝑛 ∈ ℕ)
12731272adantl 481 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝑛 ∈ ℕ)
12741267adantr 480 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑊 / 2) ∈ ℂ)
12751268, 1269, 1273, 1274fvmptd 7022 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) = (𝑊 / 2))
12761, 2, 1264, 1267, 1275climconst 15575 . . 3 (𝜑 → (𝑚 ∈ ℕ ↦ (𝑊 / 2)) ⇝ (𝑊 / 2))
12771247, 6fmptd 7133 . . . . 5 (𝜑𝐸:ℕ⟶ℂ)
12781277adantr 480 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → 𝐸:ℕ⟶ℂ)
12791278, 1273ffvelcdmd 7104 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝐸𝑛) ∈ ℂ)
12801275, 1274eqeltrd 2838 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛) ∈ ℂ)
12811275oveq2d 7446 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)) = ((𝐸𝑛) + (𝑊 / 2)))
1282815a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ∈ dom vol)
128352a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → -π ∈ ℝ*)
1284 0red 11261 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ)
12851284rexrd 11308 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 0 ∈ ℝ*)
1286 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ (-π(,)0))
1287 iooltub 45462 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π(,)0)) → 𝑠 < 0)
12881283, 1285, 1286, 1287syl3anc 1370 . . . . . . . . . . . 12 (𝑠 ∈ (-π(,)0) → 𝑠 < 0)
1289787, 1288ltned 11394 . . . . . . . . . . 11 (𝑠 ∈ (-π(,)0) → 𝑠 ≠ 0)
12901289neneqd 2942 . . . . . . . . . 10 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 = 0)
1291 velsn 4646 . . . . . . . . . 10 (𝑠 ∈ {0} ↔ 𝑠 = 0)
12921290, 1291sylnibr 329 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → ¬ 𝑠 ∈ {0})
1293777, 1292eldifd 3973 . . . . . . . 8 (𝑠 ∈ (-π(,)0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
12941293ssriv 3998 . . . . . . 7 (-π(,)0) ⊆ ((-π[,]π) ∖ {0})
12951294a1i 11 . . . . . 6 (𝜑 → (-π(,)0) ⊆ ((-π[,]π) ∖ {0}))
1296 fourierdlem103.d . . . . . 6 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
1297787adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
1298 0red 11261 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 0 ∈ ℝ)
1299787, 1284, 1288ltled 11406 . . . . . . . . 9 (𝑠 ∈ (-π(,)0) → 𝑠 ≤ 0)
13001299adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑠 ≤ 0)
13011297, 1298, 1300lensymd 11409 . . . . . . 7 ((𝜑𝑠 ∈ (-π(,)0)) → ¬ 0 < 𝑠)
13021301iffalsed 4541 . . . . . 6 ((𝜑𝑠 ∈ (-π(,)0)) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑊)
1303 eqid 2734 . . . . . . . 8 (𝐷𝑛) = (𝐷𝑛)
130411a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ∈ ℝ)
1305 0red 11261 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
130611, 771, 901ltleii 11381 . . . . . . . . 9 -π ≤ 0
13071306a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → -π ≤ 0)
1308 eqid 2734 . . . . . . . 8 (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) = (𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
13091296, 1194, 1303, 1304, 1305, 1307, 1308dirkeritg 46057 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)))
1310 ubicc2 13501 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → 0 ∈ (-π[,]0))
131152, 53, 1306, 1310mp3an 1460 . . . . . . . . . 10 0 ∈ (-π[,]0)
1312 oveq1 7437 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
1313239, 244div0i 11998 . . . . . . . . . . . . . . . . 17 (0 / 2) = 0
13141313a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → (0 / 2) = 0)
13151312, 1314eqtrd 2774 . . . . . . . . . . . . . . 15 (𝑠 = 0 → (𝑠 / 2) = 0)
1316 oveq2 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 0 → (𝑘 · 𝑠) = (𝑘 · 0))
1317 elfzelz 13560 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
13181317zcnd 12720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℂ)
13191318mul01d 11457 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → (𝑘 · 0) = 0)
13201316, 1319sylan9eq 2794 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (𝑘 · 𝑠) = 0)
13211320fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = (sin‘0))
1322 sin0 16181 . . . . . . . . . . . . . . . . . . . . 21 (sin‘0) = 0
13231322a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘0) = 0)
13241321, 1323eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (sin‘(𝑘 · 𝑠)) = 0)
13251324oveq1d 7445 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = (0 / 𝑘))
1326 0red 11261 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 ∈ ℝ)
1327 1red 11259 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ∈ ℝ)
13281317zred 12719 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℝ)
132999a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 0 < 1)
1330 elfzle1 13563 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (1...𝑛) → 1 ≤ 𝑘)
13311326, 1327, 1328, 1329, 1330ltletrd 11418 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → 0 < 𝑘)
13321331gt0ne0d 11824 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → 𝑘 ≠ 0)
13331318, 1332div0d 12039 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → (0 / 𝑘) = 0)
13341333adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → (0 / 𝑘) = 0)
13351325, 1334eqtrd 2774 . . . . . . . . . . . . . . . . 17 ((𝑠 = 0 ∧ 𝑘 ∈ (1...𝑛)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13361335sumeq2dv 15734 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0)
1337 fzfi 14009 . . . . . . . . . . . . . . . . . . 19 (1...𝑛) ∈ Fin
13381337olci 866 . . . . . . . . . . . . . . . . . 18 ((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin)
1339 sumz 15754 . . . . . . . . . . . . . . . . . 18 (((1...𝑛) ⊆ (ℤ ) ∨ (1...𝑛) ∈ Fin) → Σ𝑘 ∈ (1...𝑛)0 = 0)
13401338, 1339ax-mp 5 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (1...𝑛)0 = 0
13411340a1i 11 . . . . . . . . . . . . . . . 16 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)0 = 0)
13421336, 1341eqtrd 2774 . . . . . . . . . . . . . . 15 (𝑠 = 0 → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = 0)
13431315, 1342oveq12d 7448 . . . . . . . . . . . . . 14 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = (0 + 0))
1344 00id 11433 . . . . . . . . . . . . . . 15 (0 + 0) = 0
13451344a1i 11 . . . . . . . . . . . . . 14 (𝑠 = 0 → (0 + 0) = 0)
13461343, 1345eqtrd 2774 . . . . . . . . . . . . 13 (𝑠 = 0 → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = 0)
13471346oveq1d 7445 . . . . . . . . . . . 12 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (0 / π))
13481256a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → (0 / π) = 0)
13491347, 1348eqtrd 2774 . . . . . . . . . . 11 (𝑠 = 0 → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = 0)
1350771elexi 3500 . . . . . . . . . . 11 0 ∈ V
13511349, 1308, 1350fvmpt 7015 . . . . . . . . . 10 (0 ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0)
13521311, 1351ax-mp 5 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) = 0
1353 lbicc2 13500 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ -π ≤ 0) → -π ∈ (-π[,]0))
135452, 53, 1306, 1353mp3an 1460 . . . . . . . . . . 11 -π ∈ (-π[,]0)
1355 oveq1 7437 . . . . . . . . . . . . . 14 (𝑠 = -π → (𝑠 / 2) = (-π / 2))
1356 oveq2 7438 . . . . . . . . . . . . . . . . 17 (𝑠 = -π → (𝑘 · 𝑠) = (𝑘 · -π))
13571356fveq2d 6910 . . . . . . . . . . . . . . . 16 (𝑠 = -π → (sin‘(𝑘 · 𝑠)) = (sin‘(𝑘 · -π)))
13581357oveq1d 7445 . . . . . . . . . . . . . . 15 (𝑠 = -π → ((sin‘(𝑘 · 𝑠)) / 𝑘) = ((sin‘(𝑘 · -π)) / 𝑘))
13591358sumeq2sdv 15735 . . . . . . . . . . . . . 14 (𝑠 = -π → Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘))
13601355, 1359oveq12d 7448 . . . . . . . . . . . . 13 (𝑠 = -π → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) = ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)))
13611360oveq1d 7445 . . . . . . . . . . . 12 (𝑠 = -π → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
1362 ovex 7463 . . . . . . . . . . . 12 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) ∈ V
13631361, 1308, 1362fvmpt 7015 . . . . . . . . . . 11 (-π ∈ (-π[,]0) → ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π))
13641354, 1363ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π)
1365 mulneg12 11698 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℂ ∧ π ∈ ℂ) → (-𝑘 · π) = (𝑘 · -π))
13661318, 1207, 1365sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...𝑛) → (-𝑘 · π) = (𝑘 · -π))
13671366eqcomd 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) = (-𝑘 · π))
13681367oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = ((-𝑘 · π) / π))
13691318negcld 11604 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℂ)
13701207a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ∈ ℂ)
13711216a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...𝑛) → π ≠ 0)
13721369, 1370, 1371divcan4d 12046 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → ((-𝑘 · π) / π) = -𝑘)
13731368, 1372eqtrd 2774 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) = -𝑘)
13741317znegcld 12721 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → -𝑘 ∈ ℤ)
13751373, 1374eqeltrd 2838 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((𝑘 · -π) / π) ∈ ℤ)
1376 negpicn 26518 . . . . . . . . . . . . . . . . . . . 20 -π ∈ ℂ
13771376a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑛) → -π ∈ ℂ)
13781318, 1377mulcld 11278 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑛) → (𝑘 · -π) ∈ ℂ)
1379 sineq0 26580 . . . . . . . . . . . . . . . . . 18 ((𝑘 · -π) ∈ ℂ → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13801378, 1379syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) = 0 ↔ ((𝑘 · -π) / π) ∈ ℤ))
13811375, 1380mpbird 257 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑛) → (sin‘(𝑘 · -π)) = 0)
13821381oveq1d 7445 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = (0 / 𝑘))
13831382, 1333eqtrd 2774 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → ((sin‘(𝑘 · -π)) / 𝑘) = 0)
13841383sumeq2i 15730 . . . . . . . . . . . . 13 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = Σ𝑘 ∈ (1...𝑛)0
13851384, 1340eqtri 2762 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘) = 0
13861385oveq2i 7441 . . . . . . . . . . 11 ((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) = ((-π / 2) + 0)
13871386oveq1i 7440 . . . . . . . . . 10 (((-π / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · -π)) / 𝑘)) / π) = (((-π / 2) + 0) / π)
13881376, 239, 244divcli 12006 . . . . . . . . . . . . . 14 (-π / 2) ∈ ℂ
13891388addridi 11445 . . . . . . . . . . . . 13 ((-π / 2) + 0) = (-π / 2)
1390 divneg 11956 . . . . . . . . . . . . . 14 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
13911207, 239, 244, 1390mp3an 1460 . . . . . . . . . . . . 13 -(π / 2) = (-π / 2)
13921389, 1391eqtr4i 2765 . . . . . . . . . . . 12 ((-π / 2) + 0) = -(π / 2)
13931392oveq1i 7440 . . . . . . . . . . 11 (((-π / 2) + 0) / π) = (-(π / 2) / π)
13941038recni 11272 . . . . . . . . . . . . 13 (π / 2) ∈ ℂ
1395 divneg 11956 . . . . . . . . . . . . 13 (((π / 2) ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0) → -((π / 2) / π) = (-(π / 2) / π))
13961394, 1207, 1216, 1395mp3an 1460 . . . . . . . . . . . 12 -((π / 2) / π) = (-(π / 2) / π)
13971396eqcomi 2743 . . . . . . . . . . 11 (-(π / 2) / π) = -((π / 2) / π)
13981207, 239, 1207, 244, 1216divdiv32i 12019 . . . . . . . . . . . . 13 ((π / 2) / π) = ((π / π) / 2)
13991207, 1216dividi 11997 . . . . . . . . . . . . . 14 (π / π) = 1
14001399oveq1i 7440 . . . . . . . . . . . . 13 ((π / π) / 2) = (1 / 2)
14011398, 1400eqtri 2762 . . . . . . . . . . . 12 ((π / 2) / π) = (1 / 2)
14021401negeqi 11498 . . . . . . . . . . 11 -((π / 2) / π) = -(1 / 2)
14031393, 1397, 14023eqtri 2766 . . . . . . . . . 10 (((-π / 2) + 0) / π) = -(1 / 2)
14041364, 1387, 14033eqtri 2766 . . . . . . . . 9 ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π) = -(1 / 2)
14051352, 1404oveq12i 7442 . . . . . . . 8 (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2))
14061405a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘0) − ((𝑠 ∈ (-π[,]0) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑛)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))‘-π)) = (0 − -(1 / 2)))
1407 halfcn 12478 . . . . . . . . . 10 (1 / 2) ∈ ℂ
14081116, 1407subnegi 11585 . . . . . . . . 9 (0 − -(1 / 2)) = (0 + (1 / 2))
14091407addlidi 11446 . . . . . . . . 9 (0 + (1 / 2)) = (1 / 2)
14101408, 1409eqtri 2762 . . . . . . . 8 (0 − -(1 / 2)) = (1 / 2)
14111410a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (0 − -(1 / 2)) = (1 / 2))
14121309, 1406, 14113eqtrd 2778 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐷𝑛)‘𝑠) d𝑠 = (1 / 2))
141315, 16, 264, 265, 267, 839, 269, 271, 273, 40, 41, 42, 831, 829, 850, 599, 852, 854, 27, 38, 1282, 1295, 6, 1296, 39, 1302, 1412fourierdlem95 46156 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14141273, 1413syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ((𝐸𝑛) + (𝑊 / 2)) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14151259a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠))
1416 fveq2 6906 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐷𝑚) = (𝐷𝑛))
14171416fveq1d 6908 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝐷𝑚)‘𝑠) = ((𝐷𝑛)‘𝑠))
14181417oveq2d 7446 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14191418adantr 480 . . . . . . . . 9 ((𝑚 = 𝑛𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) = ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14201419itgeq2dv 25831 . . . . . . . 8 (𝑚 = 𝑛 → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14211420adantl 481 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑚 = 𝑛) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠 = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
142215adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → 𝐹:ℝ⟶ℝ)
142316adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π(,)0)) → 𝑋 ∈ ℝ)
14241423, 1297readdcld 11287 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π(,)0)) → (𝑋 + 𝑠) ∈ ℝ)
14251422, 1424ffvelcdmd 7104 . . . . . . . . . 10 ((𝜑𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14261425adantlr 715 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14271296dirkerf 46052 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛):ℝ⟶ℝ)
14281427ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → (𝐷𝑛):ℝ⟶ℝ)
1429787adantl 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → 𝑠 ∈ ℝ)
14301428, 1429ffvelcdmd 7104 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14311426, 1430remulcld 11288 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π(,)0)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
143215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → 𝐹:ℝ⟶ℝ)
143316adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑋 ∈ ℝ)
1434214sseli 3990 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
14351434adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14361433, 1435readdcld 11287 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑋 + 𝑠) ∈ ℝ)
14371432, 1436ffvelcdmd 7104 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14381437adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
14391427ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐷𝑛):ℝ⟶ℝ)
14401434adantl 481 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
14411439, 1440ffvelcdmd 7104 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐷𝑛)‘𝑠) ∈ ℝ)
14421438, 1441remulcld 11288 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) ∈ ℝ)
144310a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
14441296dirkercncf 46062 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
14451444adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ (ℝ–cn→ℝ))
1446 eqid 2734 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) = (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)))
14471304, 1443, 838, 1218, 264, 844, 845, 846, 847, 848, 80, 849, 1445, 1446fourierdlem84 46145 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
1448814, 816, 1442, 1447iblss 25854 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑠 ∈ (-π(,)0) ↦ ((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠))) ∈ 𝐿1)
14491431, 1448itgrecl 25847 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 ∈ ℝ)
14501415, 1421, 1194, 1449fvmptd 7022 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑍𝑛) = ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠)
14511450eqcomd 2740 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14521273, 1451syldan 591 . . . 4 ((𝜑𝑛 ∈ (ℤ‘1)) → ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 = (𝑍𝑛))
14531281, 1414, 14523eqtrrd 2779 . . 3 ((𝜑𝑛 ∈ (ℤ‘1)) → (𝑍𝑛) = ((𝐸𝑛) + ((𝑚 ∈ ℕ ↦ (𝑊 / 2))‘𝑛)))
14541, 2, 1258, 1262, 1276, 1279, 1280, 1453climadd 15664 . 2 (𝜑𝑍 ⇝ (0 + (𝑊 / 2)))
14551267addlidd 11459 . 2 (𝜑 → (0 + (𝑊 / 2)) = (𝑊 / 2))
14561454, 1455breqtrd 5173 1 (𝜑𝑍 ⇝ (𝑊 / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wtru 1537  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  csb 3907  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  ifcif 4530  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  cio 6513   Fn wfn 6557  wf 6558  cfv 6562   Isom wiso 6563  crio 7386  (class class class)co 7430  m cmap 8864  Fincfn 8983  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  3c3 12319  0cn0 12523  cz 12610  cuz 12875  +crp 13031  (,)cioo 13383  [,]cicc 13386  ...cfz 13543  ..^cfzo 13690   mod cmo 13905  chash 14365  abscabs 15269  cli 15516  Σcsu 15718  sincsin 16095  πcpi 16098  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  intcnt 23040  cnccncf 24915  volcvol 25511  𝐿1cibl 25665  citg 25666   lim climc 25911   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-symdif 4258  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-t1 23337  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-ibl 25670  df-itg 25671  df-0p 25718  df-limc 25915  df-dv 25916
This theorem is referenced by:  fourierdlem112  46173
  Copyright terms: Public domain W3C validator