Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29uz | Structured version Visualization version GIF version |
Description: A version of 19.29 1877 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
r19.29uz | ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz3.1 | . . . . . . . . 9 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 12530 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | 2 | ex 412 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑘 ∈ (ℤ≥‘𝑗) → 𝑘 ∈ 𝑍)) |
4 | pm3.2 469 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝜑 → (𝜓 → (𝜑 ∧ 𝜓)))) |
6 | 3, 5 | imim12d 81 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 → ((𝑘 ∈ 𝑍 → 𝜑) → (𝑘 ∈ (ℤ≥‘𝑗) → (𝜓 → (𝜑 ∧ 𝜓))))) |
7 | 6 | ralimdv2 3101 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)))) |
8 | 7 | impcom 407 | . . . 4 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓))) |
9 | ralim 3082 | . . . 4 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜓 → (𝜑 ∧ 𝜓)) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
11 | 10 | reximdva 3202 | . 2 ⊢ (∀𝑘 ∈ 𝑍 𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
12 | 11 | imp 406 | 1 ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ‘cfv 6418 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: caubnd 14998 caucvgb 15319 cvgcmp 15456 ulmcau 25459 |
Copyright terms: Public domain | W3C validator |