MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29uz Structured version   Visualization version   GIF version

Theorem r19.29uz 14532
Description: A version of 19.29 1853 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.29uz ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
21uztrn2 12100 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32ex 413 . . . . . . 7 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
4 pm3.2 470 . . . . . . . 8 (𝜑 → (𝜓 → (𝜑𝜓)))
54a1i 11 . . . . . . 7 (𝑗𝑍 → (𝜑 → (𝜓 → (𝜑𝜓))))
63, 5imim12d 81 . . . . . 6 (𝑗𝑍 → ((𝑘𝑍𝜑) → (𝑘 ∈ (ℤ𝑗) → (𝜓 → (𝜑𝜓)))))
76ralimdv2 3141 . . . . 5 (𝑗𝑍 → (∀𝑘𝑍 𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓))))
87impcom 408 . . . 4 ((∀𝑘𝑍 𝜑𝑗𝑍) → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)))
9 ralim 3127 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
108, 9syl 17 . . 3 ((∀𝑘𝑍 𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1110reximdva 3234 . 2 (∀𝑘𝑍 𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1211imp 407 1 ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  wral 3103  wrex 3104  cfv 6217  cuz 12082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-pre-lttri 10446  ax-pre-lttrn 10447
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-ov 7010  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-neg 10709  df-z 11819  df-uz 12083
This theorem is referenced by:  caubnd  14540  caucvgb  14858  cvgcmp  14992  ulmcau  24654
  Copyright terms: Public domain W3C validator