MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29uz Structured version   Visualization version   GIF version

Theorem r19.29uz 15293
Description: A version of 19.29 1873 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
r19.29uz ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem r19.29uz
StepHypRef Expression
1 rexuz3.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
21uztrn2 12788 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
32ex 412 . . . . . . 7 (𝑗𝑍 → (𝑘 ∈ (ℤ𝑗) → 𝑘𝑍))
4 pm3.2 469 . . . . . . . 8 (𝜑 → (𝜓 → (𝜑𝜓)))
54a1i 11 . . . . . . 7 (𝑗𝑍 → (𝜑 → (𝜓 → (𝜑𝜓))))
63, 5imim12d 81 . . . . . 6 (𝑗𝑍 → ((𝑘𝑍𝜑) → (𝑘 ∈ (ℤ𝑗) → (𝜓 → (𝜑𝜓)))))
76ralimdv2 3142 . . . . 5 (𝑗𝑍 → (∀𝑘𝑍 𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓))))
87impcom 407 . . . 4 ((∀𝑘𝑍 𝜑𝑗𝑍) → ∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)))
9 ralim 3069 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜓 → (𝜑𝜓)) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
108, 9syl 17 . . 3 ((∀𝑘𝑍 𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝜓 → ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1110reximdva 3146 . 2 (∀𝑘𝑍 𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
1211imp 406 1 ((∀𝑘𝑍 𝜑 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6499  cuz 12769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770
This theorem is referenced by:  caubnd  15301  caucvgb  15622  cvgcmp  15758  ulmcau  26280
  Copyright terms: Public domain W3C validator