MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alzdvds Structured version   Visualization version   GIF version

Theorem alzdvds 16249
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 12511 . . . . . . . 8 ℕ ⊆ ℤ
2 zcn 12494 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 15364 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4 arch 12399 . . . . . . . . 9 ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
6 ssrexv 4007 . . . . . . . 8 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥))
71, 5, 6mpsyl 68 . . . . . . 7 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)
8 zre 12493 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
9 ltnle 11213 . . . . . . . . . 10 (((abs‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
103, 8, 9syl2an 596 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
1110rexbidva 3151 . . . . . . . 8 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁)))
12 rexnal 3081 . . . . . . . 8 (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1311, 12bitrdi 287 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
147, 13mpbid 232 . . . . . 6 (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1514adantl 481 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
16 ralim 3069 . . . . . . 7 (∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
17 dvdsleabs 16240 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
18173expb 1120 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
1918expcom 413 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥𝑁𝑥 ≤ (abs‘𝑁))))
2019ralrimiv 3120 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
2116, 20syl11 33 . . . . . 6 (∀𝑥 ∈ ℤ 𝑥𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2221expdimp 452 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2315, 22mtod 198 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0)
24 nne 2929 . . . 4 𝑁 ≠ 0 ↔ 𝑁 = 0)
2523, 24sylib 218 . . 3 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → 𝑁 = 0)
2625expcom 413 . 2 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
27 dvds0 16200 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
28 breq2 5099 . . . 4 (𝑁 = 0 → (𝑥𝑁𝑥 ∥ 0))
2927, 28imbitrrid 246 . . 3 (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥𝑁))
3029ralrimiv 3120 . 2 (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥𝑁)
3126, 30impbid1 225 1 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  cfv 6486  cr 11027  0cc0 11028   < clt 11168  cle 11169  cn 12146  cz 12489  abscabs 15159  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator