MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alzdvds Structured version   Visualization version   GIF version

Theorem alzdvds 16260
Description: Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
alzdvds (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem alzdvds
StepHypRef Expression
1 nnssz 12577 . . . . . . . 8 ℕ ⊆ ℤ
2 zcn 12560 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
32abscld 15380 . . . . . . . . 9 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
4 arch 12466 . . . . . . . . 9 ((abs‘𝑁) ∈ ℝ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
53, 4syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥)
6 ssrexv 4051 . . . . . . . 8 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ (abs‘𝑁) < 𝑥 → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥))
71, 5, 6mpsyl 68 . . . . . . 7 (𝑁 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥)
8 zre 12559 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
9 ltnle 11290 . . . . . . . . . 10 (((abs‘𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
103, 8, 9syl2an 597 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((abs‘𝑁) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘𝑁)))
1110rexbidva 3177 . . . . . . . 8 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁)))
12 rexnal 3101 . . . . . . . 8 (∃𝑥 ∈ ℤ ¬ 𝑥 ≤ (abs‘𝑁) ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1311, 12bitrdi 287 . . . . . . 7 (𝑁 ∈ ℤ → (∃𝑥 ∈ ℤ (abs‘𝑁) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
147, 13mpbid 231 . . . . . 6 (𝑁 ∈ ℤ → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
1514adantl 483 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁))
16 ralim 3087 . . . . . . 7 (∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)) → (∀𝑥 ∈ ℤ 𝑥𝑁 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
17 dvdsleabs 16251 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
18173expb 1121 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
1918expcom 415 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑥 ∈ ℤ → (𝑥𝑁𝑥 ≤ (abs‘𝑁))))
2019ralrimiv 3146 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ (𝑥𝑁𝑥 ≤ (abs‘𝑁)))
2116, 20syl11 33 . . . . . 6 (∀𝑥 ∈ ℤ 𝑥𝑁 → ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2221expdimp 454 . . . . 5 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → (𝑁 ≠ 0 → ∀𝑥 ∈ ℤ 𝑥 ≤ (abs‘𝑁)))
2315, 22mtod 197 . . . 4 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → ¬ 𝑁 ≠ 0)
24 nne 2945 . . . 4 𝑁 ≠ 0 ↔ 𝑁 = 0)
2523, 24sylib 217 . . 3 ((∀𝑥 ∈ ℤ 𝑥𝑁𝑁 ∈ ℤ) → 𝑁 = 0)
2625expcom 415 . 2 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
27 dvds0 16212 . . . 4 (𝑥 ∈ ℤ → 𝑥 ∥ 0)
28 breq2 5152 . . . 4 (𝑁 = 0 → (𝑥𝑁𝑥 ∥ 0))
2927, 28imbitrrid 245 . . 3 (𝑁 = 0 → (𝑥 ∈ ℤ → 𝑥𝑁))
3029ralrimiv 3146 . 2 (𝑁 = 0 → ∀𝑥 ∈ ℤ 𝑥𝑁)
3126, 30impbid1 224 1 (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥𝑁𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3948   class class class wbr 5148  cfv 6541  cr 11106  0cc0 11107   < clt 11245  cle 11246  cn 12209  cz 12555  abscabs 15178  cdvds 16194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator