MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wsp Structured version   Visualization version   GIF version

Theorem fusgreghash2wsp 30282
Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
fusgreghash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgreghash2wsp ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem fusgreghash2wsp
Dummy variables 𝑎 𝑠 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgreghash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fveq1 6821 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠‘1) = (𝑡‘1))
32eqeq1d 2731 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠‘1) = 𝑎 ↔ (𝑡‘1) = 𝑎))
43cbvrabv 3405 . . . . . . 7 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎}
54mpteq2i 5188 . . . . . 6 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎})
61, 5fusgreg2wsp 30280 . . . . 5 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
76ad2antrr 726 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
87fveq2d 6826 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
91fusgrvtxfi 29264 . . . . 5 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
10 eqeq2 2741 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑠‘1) = 𝑎 ↔ (𝑠‘1) = 𝑦))
1110rabbidv 3402 . . . . . . . 8 (𝑎 = 𝑦 → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
12 eqid 2729 . . . . . . . 8 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})
13 ovex 7382 . . . . . . . . 9 (2 WSPathsN 𝐺) ∈ V
1413rabex 5278 . . . . . . . 8 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V
1511, 12, 14fvmpt 6930 . . . . . . 7 (𝑦𝑉 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
1615adantl 481 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
17 eqid 2729 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1817fusgrvtxfi 29264 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
19 wspthnfi 29864 . . . . . . . 8 ((Vtx‘𝐺) ∈ Fin → (2 WSPathsN 𝐺) ∈ Fin)
20 rabfi 9160 . . . . . . . 8 ((2 WSPathsN 𝐺) ∈ Fin → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2118, 19, 203syl 18 . . . . . . 7 (𝐺 ∈ FinUSGraph → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2221adantr 480 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2316, 22eqeltrd 2828 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) ∈ Fin)
241, 52wspmdisj 30281 . . . . . 6 Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)
2524a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
269, 23, 25hashiun 15729 . . . 4 (𝐺 ∈ FinUSGraph → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
2726ad2antrr 726 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
281, 5fusgreghash2wspv 30279 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
29 ralim 3069 . . . . . . . . 9 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3028, 29syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3130adantr 480 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3231imp 406 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)))
33 2fveq3 6827 . . . . . . . 8 (𝑣 = 𝑦 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3433eqeq1d 2731 . . . . . . 7 (𝑣 = 𝑦 → ((♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ↔ (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1))))
3534rspccva 3576 . . . . . 6 ((∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3632, 35sylan 580 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3736sumeq2dv 15609 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (𝐾 · (𝐾 − 1)))
389adantr 480 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
39 eqid 2729 . . . . . . . . 9 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
401, 39fusgrregdegfi 29515 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
4140imp 406 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
4241nn0cnd 12447 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ)
43 kcnktkm1cn 11551 . . . . . 6 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
4442, 43syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
45 fsumconst 15697 . . . . 5 ((𝑉 ∈ Fin ∧ (𝐾 · (𝐾 − 1)) ∈ ℂ) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4638, 44, 45syl2an2r 685 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4737, 46eqtrd 2764 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
488, 27, 473eqtrd 2768 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4948ex 412 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  c0 4284   ciun 4941  Disj wdisj 5059  cmpt 5173  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  1c1 11010   · cmul 11014  cmin 11347  2c2 12183  0cn0 12384  chash 14237  Σcsu 15593  Vtxcvtx 28941  FinUSGraphcfusgr 29261  VtxDegcvtxdg 29411   WSPathsN cwwspthsn 29773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14503  df-s2 14755  df-s3 14756  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-vtx 28943  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-fusgr 29262  df-nbgr 29278  df-vtxdg 29412  df-wlks 29545  df-wlkson 29546  df-trls 29636  df-trlson 29637  df-pths 29659  df-spths 29660  df-pthson 29661  df-spthson 29662  df-wwlks 29775  df-wwlksn 29776  df-wwlksnon 29777  df-wspthsn 29778  df-wspthsnon 29779
This theorem is referenced by:  frrusgrord0  30284
  Copyright terms: Public domain W3C validator