MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgreghash2wsp Structured version   Visualization version   GIF version

Theorem fusgreghash2wsp 30319
Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
fusgreghash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgreghash2wsp ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem fusgreghash2wsp
Dummy variables 𝑎 𝑠 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgreghash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fveq1 6875 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠‘1) = (𝑡‘1))
32eqeq1d 2737 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠‘1) = 𝑎 ↔ (𝑡‘1) = 𝑎))
43cbvrabv 3426 . . . . . . 7 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎}
54mpteq2i 5217 . . . . . 6 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎})
61, 5fusgreg2wsp 30317 . . . . 5 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
76ad2antrr 726 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
87fveq2d 6880 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
91fusgrvtxfi 29298 . . . . 5 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
10 eqeq2 2747 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑠‘1) = 𝑎 ↔ (𝑠‘1) = 𝑦))
1110rabbidv 3423 . . . . . . . 8 (𝑎 = 𝑦 → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
12 eqid 2735 . . . . . . . 8 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})
13 ovex 7438 . . . . . . . . 9 (2 WSPathsN 𝐺) ∈ V
1413rabex 5309 . . . . . . . 8 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V
1511, 12, 14fvmpt 6986 . . . . . . 7 (𝑦𝑉 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
1615adantl 481 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
17 eqid 2735 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1817fusgrvtxfi 29298 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
19 wspthnfi 29901 . . . . . . . 8 ((Vtx‘𝐺) ∈ Fin → (2 WSPathsN 𝐺) ∈ Fin)
20 rabfi 9275 . . . . . . . 8 ((2 WSPathsN 𝐺) ∈ Fin → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2118, 19, 203syl 18 . . . . . . 7 (𝐺 ∈ FinUSGraph → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2221adantr 480 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2316, 22eqeltrd 2834 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) ∈ Fin)
241, 52wspmdisj 30318 . . . . . 6 Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)
2524a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
269, 23, 25hashiun 15838 . . . 4 (𝐺 ∈ FinUSGraph → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
2726ad2antrr 726 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
281, 5fusgreghash2wspv 30316 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
29 ralim 3076 . . . . . . . . 9 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3028, 29syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3130adantr 480 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3231imp 406 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)))
33 2fveq3 6881 . . . . . . . 8 (𝑣 = 𝑦 → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3433eqeq1d 2737 . . . . . . 7 (𝑣 = 𝑦 → ((♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ↔ (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1))))
3534rspccva 3600 . . . . . 6 ((∀𝑣𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3632, 35sylan 580 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑦𝑉) → (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
3736sumeq2dv 15718 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (𝐾 · (𝐾 − 1)))
389adantr 480 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
39 eqid 2735 . . . . . . . . 9 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
401, 39fusgrregdegfi 29549 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾𝐾 ∈ ℕ0))
4140imp 406 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
4241nn0cnd 12564 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℂ)
43 kcnktkm1cn 11668 . . . . . 6 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
4442, 43syl 17 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
45 fsumconst 15806 . . . . 5 ((𝑉 ∈ Fin ∧ (𝐾 · (𝐾 − 1)) ∈ ℂ) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4638, 44, 45syl2an2r 685 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4737, 46eqtrd 2770 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (♯‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
488, 27, 473eqtrd 2774 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1))))
4948ex 412 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(2 WSPathsN 𝐺)) = ((♯‘𝑉) · (𝐾 · (𝐾 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  c0 4308   ciun 4967  Disj wdisj 5086  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  cc 11127  1c1 11130   · cmul 11134  cmin 11466  2c2 12295  0cn0 12501  chash 14348  Σcsu 15702  Vtxcvtx 28975  FinUSGraphcfusgr 29295  VtxDegcvtxdg 29445   WSPathsN cwwspthsn 29810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-dju 9915  df-card 9953  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-xadd 13129  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-vtx 28977  df-iedg 28978  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-fusgr 29296  df-nbgr 29312  df-vtxdg 29446  df-wlks 29579  df-wlkson 29580  df-trls 29672  df-trlson 29673  df-pths 29696  df-spths 29697  df-pthson 29698  df-spthson 29699  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814  df-wspthsn 29815  df-wspthsnon 29816
This theorem is referenced by:  frrusgrord0  30321
  Copyright terms: Public domain W3C validator