Proof of Theorem mpteqb
Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. . 3
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) |
2 | 1 | ralimi 3086 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
3 | | fneq1 6508 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴)) |
4 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 4 | mptfng 6556 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
6 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
7 | 6 | mptfng 6556 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) |
8 | 3, 5, 7 | 3bitr4g 313 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀𝑥 ∈ 𝐴 𝐶 ∈ V)) |
9 | 8 | biimpd 228 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∀𝑥 ∈ 𝐴 𝐶 ∈ V)) |
10 | | r19.26 3094 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V)) |
11 | | nfmpt1 5178 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
12 | | nfmpt1 5178 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
13 | 11, 12 | nfeq 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
14 | | simpll 763 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ∧ 𝑥 ∈ 𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
15 | 14 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ∧ 𝑥 ∈ 𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥)) |
16 | 4 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
17 | 16 | ad2ant2lr 744 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ∧ 𝑥 ∈ 𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
18 | 6 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ V) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
19 | 18 | ad2ant2l 742 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ∧ 𝑥 ∈ 𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
20 | 15, 17, 19 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ∧ 𝑥 ∈ 𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶) |
21 | 20 | exp31 419 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (𝑥 ∈ 𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))) |
22 | 13, 21 | ralrimi 3139 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → ∀𝑥 ∈ 𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)) |
23 | | ralim 3082 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥 ∈ 𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (∀𝑥 ∈ 𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
25 | 10, 24 | syl5bir 242 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → ((∀𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ V) → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
26 | 25 | expd 415 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (∀𝑥 ∈ 𝐴 𝐶 ∈ V → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶))) |
27 | 9, 26 | mpdd 43 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
28 | 27 | com12 32 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
29 | | eqid 2738 |
. . . 4
⊢ 𝐴 = 𝐴 |
30 | | mpteq12 5162 |
. . . 4
⊢ ((𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
31 | 29, 30 | mpan 686 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 = 𝐶 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
32 | 28, 31 | impbid1 224 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V → ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |
33 | 2, 32 | syl 17 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶)) |