MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteqb Structured version   Visualization version   GIF version

Theorem mpteqb 6779
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 6794. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 3510 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 3157 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 fneq1 6437 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((𝑥𝐴𝐵) Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
4 eqid 2818 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6480 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
6 eqid 2818 . . . . . . . 8 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
76mptfng 6480 . . . . . . 7 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
83, 5, 73bitr4g 315 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 𝐶 ∈ V))
98biimpd 230 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐶 ∈ V))
10 r19.26 3167 . . . . . . 7 (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V))
11 nfmpt1 5155 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
12 nfmpt1 5155 . . . . . . . . . 10 𝑥(𝑥𝐴𝐶)
1311, 12nfeq 2988 . . . . . . . . 9 𝑥(𝑥𝐴𝐵) = (𝑥𝐴𝐶)
14 simpll 763 . . . . . . . . . . . 12 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
1514fveq1d 6665 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐶)‘𝑥))
164fvmpt2 6771 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716ad2ant2lr 744 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
186fvmpt2 6771 . . . . . . . . . . . 12 ((𝑥𝐴𝐶 ∈ V) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1918ad2ant2l 742 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
2015, 17, 193eqtr3d 2861 . . . . . . . . . 10 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶)
2120exp31 420 . . . . . . . . 9 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (𝑥𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)))
2213, 21ralrimi 3213 . . . . . . . 8 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))
23 ralim 3159 . . . . . . . 8 (∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2422, 23syl 17 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2510, 24syl5bir 244 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2625expd 416 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → (∀𝑥𝐴 𝐶 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶)))
279, 26mpdd 43 . . . 4 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶))
2827com12 32 . . 3 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 𝐵 = 𝐶))
29 eqid 2818 . . . 4 𝐴 = 𝐴
30 mpteq12 5144 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3129, 30mpan 686 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3228, 31impbid1 226 . 2 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
332, 32syl 17 1 (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cmpt 5137   Fn wfn 6343  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  eqfnfv  6794  eufnfv  6982  offveqb  7420  ramcl  16353  fucsect  17230  setcepi  17336  0frgp  18834  dprdf11  19074  dpjeq  19110  mvrf1  20133  mplmonmul  20173  frgpcyg  20648  ustuqtop  22782  mdegle0  24598  ply1nzb  24643  fedgmullem2  30925  cvmliftphtlem  32461  matunitlindflem1  34769
  Copyright terms: Public domain W3C validator