MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteqb Structured version   Visualization version   GIF version

Theorem mpteqb 6987
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 7003. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 3468 . . 3 (𝐵𝑉𝐵 ∈ V)
21ralimi 3066 . 2 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵 ∈ V)
3 fneq1 6609 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((𝑥𝐴𝐵) Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
4 eqid 2729 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54mptfng 6657 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
6 eqid 2729 . . . . . . . 8 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
76mptfng 6657 . . . . . . 7 (∀𝑥𝐴 𝐶 ∈ V ↔ (𝑥𝐴𝐶) Fn 𝐴)
83, 5, 73bitr4g 314 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 𝐶 ∈ V))
98biimpd 229 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐶 ∈ V))
10 r19.26 3091 . . . . . . 7 (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) ↔ (∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V))
11 nfmpt1 5206 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
12 nfmpt1 5206 . . . . . . . . . 10 𝑥(𝑥𝐴𝐶)
1311, 12nfeq 2905 . . . . . . . . 9 𝑥(𝑥𝐴𝐵) = (𝑥𝐴𝐶)
14 simpll 766 . . . . . . . . . . . 12 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
1514fveq1d 6860 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐶)‘𝑥))
164fvmpt2 6979 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1716ad2ant2lr 748 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
186fvmpt2 6979 . . . . . . . . . . . 12 ((𝑥𝐴𝐶 ∈ V) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
1918ad2ant2l 746 . . . . . . . . . . 11 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
2015, 17, 193eqtr3d 2772 . . . . . . . . . 10 ((((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ∧ 𝑥𝐴) ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 = 𝐶)
2120exp31 419 . . . . . . . . 9 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (𝑥𝐴 → ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶)))
2213, 21ralrimi 3235 . . . . . . . 8 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶))
23 ralim 3069 . . . . . . . 8 (∀𝑥𝐴 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 𝐵 = 𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2422, 23syl 17 . . . . . . 7 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 (𝐵 ∈ V ∧ 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2510, 24biimtrrid 243 . . . . . 6 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ((∀𝑥𝐴 𝐵 ∈ V ∧ ∀𝑥𝐴 𝐶 ∈ V) → ∀𝑥𝐴 𝐵 = 𝐶))
2625expd 415 . . . . 5 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → (∀𝑥𝐴 𝐶 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶)))
279, 26mpdd 43 . . . 4 ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → (∀𝑥𝐴 𝐵 ∈ V → ∀𝑥𝐴 𝐵 = 𝐶))
2827com12 32 . . 3 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) → ∀𝑥𝐴 𝐵 = 𝐶))
29 eqid 2729 . . . 4 𝐴 = 𝐴
30 mpteq12 5195 . . . 4 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 𝐵 = 𝐶) → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3129, 30mpan 690 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
3228, 31impbid1 225 . 2 (∀𝑥𝐴 𝐵 ∈ V → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
332, 32syl 17 1 (∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cmpt 5188   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  eqfnfv  7003  eufnfv  7203  offveqb  7680  caofidlcan  7691  ramcl  17000  fucsect  17937  setcepi  18050  0frgp  19709  dprdf11  19955  dpjeq  19991  frgpcyg  21483  mvrf1  21895  mplmonmul  21943  ustuqtop  24134  mdegle0  25982  ply1nzb  26028  fedgmullem2  33626  cvmliftphtlem  35304  matunitlindflem1  37610  cfsetsnfsetf1  47060  1arymaptf1  48631
  Copyright terms: Public domain W3C validator