MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptclsg Structured version   Visualization version   GIF version

Theorem ptclsg 22223
Description: The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ptcls.2 𝐽 = (∏t‘(𝑘𝐴𝑅))
ptcls.a (𝜑𝐴𝑉)
ptcls.j ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
ptcls.c ((𝜑𝑘𝐴) → 𝑆𝑋)
ptclsg.1 (𝜑 𝑘𝐴 𝑆AC 𝐴)
Assertion
Ref Expression
ptclsg (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝑅(𝑘)   𝑆(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem ptclsg
Dummy variables 𝑓 𝑔 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcls.a . . . . 5 (𝜑𝐴𝑉)
2 ptcls.j . . . . . 6 ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
3 topontop 21521 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
42, 3syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑅 ∈ Top)
5 ptcls.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝑆𝑋)
6 toponuni 21522 . . . . . . . 8 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
72, 6syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑋 = 𝑅)
85, 7sseqtrd 4007 . . . . . 6 ((𝜑𝑘𝐴) → 𝑆 𝑅)
9 eqid 2821 . . . . . . 7 𝑅 = 𝑅
109clscld 21655 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
114, 8, 10syl2anc 586 . . . . 5 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
121, 4, 11ptcldmpt 22222 . . . 4 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘(∏t‘(𝑘𝐴𝑅))))
13 ptcls.2 . . . . 5 𝐽 = (∏t‘(𝑘𝐴𝑅))
1413fveq2i 6673 . . . 4 (Clsd‘𝐽) = (Clsd‘(∏t‘(𝑘𝐴𝑅)))
1512, 14eleqtrrdi 2924 . . 3 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽))
169sscls 21664 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
174, 8, 16syl2anc 586 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
1817ralrimiva 3182 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
19 ss2ixp 8474 . . . 4 (∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆) → X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2018, 19syl 17 . . 3 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
21 eqid 2821 . . . 4 𝐽 = 𝐽
2221clsss2 21680 . . 3 ((X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽) ∧ X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2315, 20, 22syl2anc 586 . 2 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
24 vex 3497 . . . . . 6 𝑢 ∈ V
25 eqeq1 2825 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
2625anbi2d 630 . . . . . . 7 (𝑥 = 𝑢 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2726exbidv 1922 . . . . . 6 (𝑥 = 𝑢 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2824, 27elab 3667 . . . . 5 (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
29 nffvmpt1 6681 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝐴𝑅)‘𝑦)
3029nfel2 2996 . . . . . . . . . . . . . . 15 𝑘(𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)
31 nfv 1915 . . . . . . . . . . . . . . 15 𝑦(𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)
32 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑔𝑦) = (𝑔𝑘))
33 fveq2 6670 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → ((𝑘𝐴𝑅)‘𝑦) = ((𝑘𝐴𝑅)‘𝑘))
3432, 33eleq12d 2907 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)))
3530, 31, 34cbvralw 3441 . . . . . . . . . . . . . 14 (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘))
36 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘𝐴)
37 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝑅) = (𝑘𝐴𝑅)
3837fvmpt2 6779 . . . . . . . . . . . . . . . . 17 ((𝑘𝐴𝑅 ∈ (TopOn‘𝑋)) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
3936, 2, 38syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
4039eleq2d 2898 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ (𝑔𝑘) ∈ 𝑅))
4140ralbidva 3196 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4235, 41syl5bb 285 . . . . . . . . . . . . 13 (𝜑 → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4342anbi2d 630 . . . . . . . . . . . 12 (𝜑 → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4443adantr 483 . . . . . . . . . . 11 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4544biimpa 479 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
46 ptclsg.1 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝑆AC 𝐴)
4746ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑘𝐴 𝑆AC 𝐴)
48 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝜑)
49 vex 3497 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
5049elixp 8468 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)))
5150simprbi 499 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
5251ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
539clsndisj 21683 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) ∧ ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘))) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
5453ex 415 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
55543expia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
564, 8, 55syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5756ralimdva 3177 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5848, 52, 57sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
59 simprlr 778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)
60 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑦𝐴 (𝑔𝑦))
6132cbvixpv 8479 . . . . . . . . . . . . . . . . . . 19 X𝑦𝐴 (𝑔𝑦) = X𝑘𝐴 (𝑔𝑘)
6260, 61eleqtrdi 2923 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑘𝐴 (𝑔𝑘))
6349elixp 8468 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝑔𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6463simprbi 499 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 (𝑔𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
6562, 64syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
66 r19.26 3170 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) ↔ (∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6759, 65, 66sylanbrc 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)))
68 ralim 3162 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅) → (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
6958, 67, 68sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
70 rabn0 4339 . . . . . . . . . . . . . . . . 17 ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
71 dfin5 3944 . . . . . . . . . . . . . . . . . . 19 ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)}
72 inss2 4206 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑆
73 ssiun2 4971 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐴𝑆 𝑘𝐴 𝑆)
7472, 73sstrid 3978 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴 → ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆)
75 sseqin2 4192 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆 ↔ ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7674, 75sylib 220 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 → ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7771, 76syl5eqr 2870 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 → {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} = ((𝑔𝑘) ∩ 𝑆))
7877neeq1d 3075 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 → ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
7970, 78syl5bbr 287 . . . . . . . . . . . . . . . 16 (𝑘𝐴 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
8079ralbiia 3164 . . . . . . . . . . . . . . 15 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
8169, 80sylibr 236 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
82 nfv 1915 . . . . . . . . . . . . . . 15 𝑦𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)
83 nfiu1 4953 . . . . . . . . . . . . . . . 16 𝑘 𝑘𝐴 𝑆
84 nfcv 2977 . . . . . . . . . . . . . . . . . 18 𝑘(𝑔𝑦)
85 nfcsb1v 3907 . . . . . . . . . . . . . . . . . 18 𝑘𝑦 / 𝑘𝑆
8684, 85nfin 4193 . . . . . . . . . . . . . . . . 17 𝑘((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8786nfel2 2996 . . . . . . . . . . . . . . . 16 𝑘 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8883, 87nfrex 3309 . . . . . . . . . . . . . . 15 𝑘𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
89 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑔𝑘) = (𝑔𝑦))
90 csbeq1a 3897 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
9189, 90ineq12d 4190 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝑔𝑘) ∩ 𝑆) = ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9291eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9392rexbidv 3297 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9482, 88, 93cbvralw 3441 . . . . . . . . . . . . . 14 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9581, 94sylib 220 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
96 eleq1 2900 . . . . . . . . . . . . . 14 (𝑧 = (𝑦) → (𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9796acni3 9473 . . . . . . . . . . . . 13 (( 𝑘𝐴 𝑆AC 𝐴 ∧ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9847, 95, 97syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
99 ffn 6514 . . . . . . . . . . . . . 14 (:𝐴 𝑘𝐴 𝑆 Fn 𝐴)
100 nfv 1915 . . . . . . . . . . . . . . . 16 𝑦(𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)
10186nfel2 2996 . . . . . . . . . . . . . . . 16 𝑘(𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
102 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝑘) = (𝑦))
103102, 91eleq12d 2907 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
104100, 101, 103cbvralw 3441 . . . . . . . . . . . . . . 15 (∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
105 ne0i 4300 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) → X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
106 vex 3497 . . . . . . . . . . . . . . . . 17 ∈ V
107106elixp 8468 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ↔ ( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)))
108 ixpin 8487 . . . . . . . . . . . . . . . . . 18 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
10961ineq1i 4185 . . . . . . . . . . . . . . . . . 18 (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
110108, 109eqtr4i 2847 . . . . . . . . . . . . . . . . 17 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆)
111110neeq1i 3080 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
112105, 107, 1113imtr3i 293 . . . . . . . . . . . . . . 15 (( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
113104, 112sylan2br 596 . . . . . . . . . . . . . 14 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11499, 113sylan 582 . . . . . . . . . . . . 13 ((:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
115114exlimiv 1931 . . . . . . . . . . . 12 (∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11698, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
117116expr 459 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
11845, 117syldan 593 . . . . . . . . 9 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
1191183adantr3 1167 . . . . . . . 8 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
120 eleq2 2901 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢𝑓X𝑦𝐴 (𝑔𝑦)))
121 ineq1 4181 . . . . . . . . . 10 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑢X𝑘𝐴 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆))
122121neeq1d 3075 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑢X𝑘𝐴 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
123120, 122imbi12d 347 . . . . . . . 8 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅) ↔ (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)))
124119, 123syl5ibrcom 249 . . . . . . 7 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
125124expimpd 456 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
126125exlimdv 1934 . . . . 5 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
12728, 126syl5bi 244 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
128127ralrimiv 3181 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅))
1294fmpttd 6879 . . . . . . . 8 (𝜑 → (𝑘𝐴𝑅):𝐴⟶Top)
130129ffnd 6515 . . . . . . 7 (𝜑 → (𝑘𝐴𝑅) Fn 𝐴)
131 eqid 2821 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
132131ptval 22178 . . . . . . 7 ((𝐴𝑉 ∧ (𝑘𝐴𝑅) Fn 𝐴) → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1331, 130, 132syl2anc 586 . . . . . 6 (𝜑 → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
13413, 133syl5eq 2868 . . . . 5 (𝜑𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
135134adantr 483 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1362ralrimiva 3182 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋))
13713pttopon 22204 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
1381, 136, 137syl2anc 586 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
139 toponuni 21522 . . . . . 6 (𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋) → X𝑘𝐴 𝑋 = 𝐽)
140138, 139syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑋 = 𝐽)
141140adantr 483 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑋 = 𝐽)
142131ptbas 22187 . . . . . 6 ((𝐴𝑉 ∧ (𝑘𝐴𝑅):𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1431, 129, 142syl2anc 586 . . . . 5 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
144143adantr 483 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1455ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑆𝑋)
146 ss2ixp 8474 . . . . . 6 (∀𝑘𝐴 𝑆𝑋X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
147145, 146syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
148147adantr 483 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
1499clsss3 21667 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
1504, 8, 149syl2anc 586 . . . . . . . 8 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
151150, 7sseqtrrd 4008 . . . . . . 7 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
152151ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
153 ss2ixp 8474 . . . . . 6 (∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
154152, 153syl 17 . . . . 5 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
155154sselda 3967 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓X𝑘𝐴 𝑋)
156135, 141, 144, 148, 155elcls3 21691 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆) ↔ ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
157128, 156mpbird 259 . 2 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆))
15823, 157eqelssd 3988 1 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  csb 3883  cdif 3933  cin 3935  wss 3936  c0 4291   cuni 4838   ciun 4919  cmpt 5146   Fn wfn 6350  wf 6351  cfv 6355  Xcixp 8461  Fincfn 8509  AC wacn 9367  topGenctg 16711  tcpt 16712  Topctop 21501  TopOnctopon 21518  TopBasesctb 21553  Clsdccld 21624  clsccl 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-fin 8513  df-fi 8875  df-acn 9371  df-topgen 16717  df-pt 16718  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629
This theorem is referenced by:  ptcls  22224  dfac14  22226
  Copyright terms: Public domain W3C validator