MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptclsg Structured version   Visualization version   GIF version

Theorem ptclsg 23639
Description: The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ptcls.2 𝐽 = (∏t‘(𝑘𝐴𝑅))
ptcls.a (𝜑𝐴𝑉)
ptcls.j ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
ptcls.c ((𝜑𝑘𝐴) → 𝑆𝑋)
ptclsg.1 (𝜑 𝑘𝐴 𝑆AC 𝐴)
Assertion
Ref Expression
ptclsg (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝑅(𝑘)   𝑆(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem ptclsg
Dummy variables 𝑓 𝑔 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcls.a . . . . 5 (𝜑𝐴𝑉)
2 ptcls.j . . . . . 6 ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
3 topontop 22935 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
42, 3syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑅 ∈ Top)
5 ptcls.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝑆𝑋)
6 toponuni 22936 . . . . . . . 8 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
72, 6syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑋 = 𝑅)
85, 7sseqtrd 4036 . . . . . 6 ((𝜑𝑘𝐴) → 𝑆 𝑅)
9 eqid 2735 . . . . . . 7 𝑅 = 𝑅
109clscld 23071 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
114, 8, 10syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
121, 4, 11ptcldmpt 23638 . . . 4 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘(∏t‘(𝑘𝐴𝑅))))
13 ptcls.2 . . . . 5 𝐽 = (∏t‘(𝑘𝐴𝑅))
1413fveq2i 6910 . . . 4 (Clsd‘𝐽) = (Clsd‘(∏t‘(𝑘𝐴𝑅)))
1512, 14eleqtrrdi 2850 . . 3 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽))
169sscls 23080 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
174, 8, 16syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
1817ralrimiva 3144 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
19 ss2ixp 8949 . . . 4 (∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆) → X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2018, 19syl 17 . . 3 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
21 eqid 2735 . . . 4 𝐽 = 𝐽
2221clsss2 23096 . . 3 ((X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽) ∧ X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2315, 20, 22syl2anc 584 . 2 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
24 vex 3482 . . . . . 6 𝑢 ∈ V
25 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
2625anbi2d 630 . . . . . . 7 (𝑥 = 𝑢 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2726exbidv 1919 . . . . . 6 (𝑥 = 𝑢 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2824, 27elab 3681 . . . . 5 (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
29 nffvmpt1 6918 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝐴𝑅)‘𝑦)
3029nfel2 2922 . . . . . . . . . . . . . . 15 𝑘(𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)
31 nfv 1912 . . . . . . . . . . . . . . 15 𝑦(𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)
32 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑔𝑦) = (𝑔𝑘))
33 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → ((𝑘𝐴𝑅)‘𝑦) = ((𝑘𝐴𝑅)‘𝑘))
3432, 33eleq12d 2833 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)))
3530, 31, 34cbvralw 3304 . . . . . . . . . . . . . 14 (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘))
36 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘𝐴)
37 eqid 2735 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝑅) = (𝑘𝐴𝑅)
3837fvmpt2 7027 . . . . . . . . . . . . . . . . 17 ((𝑘𝐴𝑅 ∈ (TopOn‘𝑋)) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
3936, 2, 38syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
4039eleq2d 2825 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ (𝑔𝑘) ∈ 𝑅))
4140ralbidva 3174 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4235, 41bitrid 283 . . . . . . . . . . . . 13 (𝜑 → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4342anbi2d 630 . . . . . . . . . . . 12 (𝜑 → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4443adantr 480 . . . . . . . . . . 11 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4544biimpa 476 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
46 ptclsg.1 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝑆AC 𝐴)
4746ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑘𝐴 𝑆AC 𝐴)
48 simpll 767 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝜑)
49 vex 3482 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
5049elixp 8943 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)))
5150simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
5251ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
539clsndisj 23099 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) ∧ ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘))) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
5453ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
55543expia 1120 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
564, 8, 55syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5756ralimdva 3165 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5848, 52, 57sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
59 simprlr 780 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)
60 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑦𝐴 (𝑔𝑦))
6132cbvixpv 8954 . . . . . . . . . . . . . . . . . . 19 X𝑦𝐴 (𝑔𝑦) = X𝑘𝐴 (𝑔𝑘)
6260, 61eleqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑘𝐴 (𝑔𝑘))
6349elixp 8943 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝑔𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6463simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 (𝑔𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
6562, 64syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
66 r19.26 3109 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) ↔ (∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6759, 65, 66sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)))
68 ralim 3084 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅) → (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
6958, 67, 68sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
70 rabn0 4395 . . . . . . . . . . . . . . . . 17 ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
71 dfin5 3971 . . . . . . . . . . . . . . . . . . 19 ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)}
72 inss2 4246 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑆
73 ssiun2 5052 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐴𝑆 𝑘𝐴 𝑆)
7472, 73sstrid 4007 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴 → ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆)
75 sseqin2 4231 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆 ↔ ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7674, 75sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 → ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7771, 76eqtr3id 2789 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 → {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} = ((𝑔𝑘) ∩ 𝑆))
7877neeq1d 2998 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 → ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
7970, 78bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑘𝐴 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
8079ralbiia 3089 . . . . . . . . . . . . . . 15 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
8169, 80sylibr 234 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
82 nfv 1912 . . . . . . . . . . . . . . 15 𝑦𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)
83 nfiu1 5032 . . . . . . . . . . . . . . . 16 𝑘 𝑘𝐴 𝑆
84 nfcv 2903 . . . . . . . . . . . . . . . . . 18 𝑘(𝑔𝑦)
85 nfcsb1v 3933 . . . . . . . . . . . . . . . . . 18 𝑘𝑦 / 𝑘𝑆
8684, 85nfin 4232 . . . . . . . . . . . . . . . . 17 𝑘((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8786nfel2 2922 . . . . . . . . . . . . . . . 16 𝑘 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8883, 87nfrexw 3311 . . . . . . . . . . . . . . 15 𝑘𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
89 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑔𝑘) = (𝑔𝑦))
90 csbeq1a 3922 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
9189, 90ineq12d 4229 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝑔𝑘) ∩ 𝑆) = ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9291eleq2d 2825 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9392rexbidv 3177 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9482, 88, 93cbvralw 3304 . . . . . . . . . . . . . 14 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9581, 94sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
96 eleq1 2827 . . . . . . . . . . . . . 14 (𝑧 = (𝑦) → (𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9796acni3 10085 . . . . . . . . . . . . 13 (( 𝑘𝐴 𝑆AC 𝐴 ∧ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9847, 95, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
99 ffn 6737 . . . . . . . . . . . . . 14 (:𝐴 𝑘𝐴 𝑆 Fn 𝐴)
100 nfv 1912 . . . . . . . . . . . . . . . 16 𝑦(𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)
10186nfel2 2922 . . . . . . . . . . . . . . . 16 𝑘(𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
102 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝑘) = (𝑦))
103102, 91eleq12d 2833 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
104100, 101, 103cbvralw 3304 . . . . . . . . . . . . . . 15 (∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
105 ne0i 4347 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) → X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
106 vex 3482 . . . . . . . . . . . . . . . . 17 ∈ V
107106elixp 8943 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ↔ ( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)))
108 ixpin 8962 . . . . . . . . . . . . . . . . . 18 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
10961ineq1i 4224 . . . . . . . . . . . . . . . . . 18 (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
110108, 109eqtr4i 2766 . . . . . . . . . . . . . . . . 17 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆)
111110neeq1i 3003 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
112105, 107, 1113imtr3i 291 . . . . . . . . . . . . . . 15 (( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
113104, 112sylan2br 595 . . . . . . . . . . . . . 14 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11499, 113sylan 580 . . . . . . . . . . . . 13 ((:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
115114exlimiv 1928 . . . . . . . . . . . 12 (∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11698, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
117116expr 456 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
11845, 117syldan 591 . . . . . . . . 9 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
1191183adantr3 1170 . . . . . . . 8 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
120 eleq2 2828 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢𝑓X𝑦𝐴 (𝑔𝑦)))
121 ineq1 4221 . . . . . . . . . 10 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑢X𝑘𝐴 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆))
122121neeq1d 2998 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑢X𝑘𝐴 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
123120, 122imbi12d 344 . . . . . . . 8 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅) ↔ (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)))
124119, 123syl5ibrcom 247 . . . . . . 7 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
125124expimpd 453 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
126125exlimdv 1931 . . . . 5 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
12728, 126biimtrid 242 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
128127ralrimiv 3143 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅))
1294fmpttd 7135 . . . . . . . 8 (𝜑 → (𝑘𝐴𝑅):𝐴⟶Top)
130129ffnd 6738 . . . . . . 7 (𝜑 → (𝑘𝐴𝑅) Fn 𝐴)
131 eqid 2735 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
132131ptval 23594 . . . . . . 7 ((𝐴𝑉 ∧ (𝑘𝐴𝑅) Fn 𝐴) → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1331, 130, 132syl2anc 584 . . . . . 6 (𝜑 → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
13413, 133eqtrid 2787 . . . . 5 (𝜑𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
135134adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1362ralrimiva 3144 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋))
13713pttopon 23620 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
1381, 136, 137syl2anc 584 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
139 toponuni 22936 . . . . . 6 (𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋) → X𝑘𝐴 𝑋 = 𝐽)
140138, 139syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑋 = 𝐽)
141140adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑋 = 𝐽)
142131ptbas 23603 . . . . . 6 ((𝐴𝑉 ∧ (𝑘𝐴𝑅):𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1431, 129, 142syl2anc 584 . . . . 5 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
144143adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1455ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑆𝑋)
146 ss2ixp 8949 . . . . . 6 (∀𝑘𝐴 𝑆𝑋X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
147145, 146syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
148147adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
1499clsss3 23083 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
1504, 8, 149syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
151150, 7sseqtrrd 4037 . . . . . . 7 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
152151ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
153 ss2ixp 8949 . . . . . 6 (∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
154152, 153syl 17 . . . . 5 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
155154sselda 3995 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓X𝑘𝐴 𝑋)
156135, 141, 144, 148, 155elcls3 23107 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆) ↔ ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
157128, 156mpbird 257 . 2 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆))
15823, 157eqelssd 4017 1 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  {crab 3433  csb 3908  cdif 3960  cin 3962  wss 3963  c0 4339   cuni 4912   ciun 4996  cmpt 5231   Fn wfn 6558  wf 6559  cfv 6563  Xcixp 8936  Fincfn 8984  AC wacn 9976  topGenctg 17484  tcpt 17485  Topctop 22915  TopOnctopon 22932  TopBasesctb 22968  Clsdccld 23040  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1o 8505  df-2o 8506  df-map 8867  df-ixp 8937  df-en 8985  df-fin 8988  df-fi 9449  df-acn 9980  df-topgen 17490  df-pt 17491  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045
This theorem is referenced by:  ptcls  23640  dfac14  23642
  Copyright terms: Public domain W3C validator