MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptclsg Structured version   Visualization version   GIF version

Theorem ptclsg 23509
Description: The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ptcls.2 𝐽 = (∏t‘(𝑘𝐴𝑅))
ptcls.a (𝜑𝐴𝑉)
ptcls.j ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
ptcls.c ((𝜑𝑘𝐴) → 𝑆𝑋)
ptclsg.1 (𝜑 𝑘𝐴 𝑆AC 𝐴)
Assertion
Ref Expression
ptclsg (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝑅(𝑘)   𝑆(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem ptclsg
Dummy variables 𝑓 𝑔 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcls.a . . . . 5 (𝜑𝐴𝑉)
2 ptcls.j . . . . . 6 ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
3 topontop 22807 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
42, 3syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑅 ∈ Top)
5 ptcls.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝑆𝑋)
6 toponuni 22808 . . . . . . . 8 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
72, 6syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑋 = 𝑅)
85, 7sseqtrd 3986 . . . . . 6 ((𝜑𝑘𝐴) → 𝑆 𝑅)
9 eqid 2730 . . . . . . 7 𝑅 = 𝑅
109clscld 22941 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
114, 8, 10syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
121, 4, 11ptcldmpt 23508 . . . 4 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘(∏t‘(𝑘𝐴𝑅))))
13 ptcls.2 . . . . 5 𝐽 = (∏t‘(𝑘𝐴𝑅))
1413fveq2i 6864 . . . 4 (Clsd‘𝐽) = (Clsd‘(∏t‘(𝑘𝐴𝑅)))
1512, 14eleqtrrdi 2840 . . 3 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽))
169sscls 22950 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
174, 8, 16syl2anc 584 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
1817ralrimiva 3126 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
19 ss2ixp 8886 . . . 4 (∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆) → X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2018, 19syl 17 . . 3 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
21 eqid 2730 . . . 4 𝐽 = 𝐽
2221clsss2 22966 . . 3 ((X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽) ∧ X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2315, 20, 22syl2anc 584 . 2 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
24 vex 3454 . . . . . 6 𝑢 ∈ V
25 eqeq1 2734 . . . . . . . 8 (𝑥 = 𝑢 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
2625anbi2d 630 . . . . . . 7 (𝑥 = 𝑢 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2726exbidv 1921 . . . . . 6 (𝑥 = 𝑢 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2824, 27elab 3649 . . . . 5 (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
29 nffvmpt1 6872 . . . . . . . . . . . . . . . 16 𝑘((𝑘𝐴𝑅)‘𝑦)
3029nfel2 2911 . . . . . . . . . . . . . . 15 𝑘(𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)
31 nfv 1914 . . . . . . . . . . . . . . 15 𝑦(𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)
32 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑔𝑦) = (𝑔𝑘))
33 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → ((𝑘𝐴𝑅)‘𝑦) = ((𝑘𝐴𝑅)‘𝑘))
3432, 33eleq12d 2823 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)))
3530, 31, 34cbvralw 3282 . . . . . . . . . . . . . 14 (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘))
36 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘𝐴)
37 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴𝑅) = (𝑘𝐴𝑅)
3837fvmpt2 6982 . . . . . . . . . . . . . . . . 17 ((𝑘𝐴𝑅 ∈ (TopOn‘𝑋)) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
3936, 2, 38syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
4039eleq2d 2815 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ (𝑔𝑘) ∈ 𝑅))
4140ralbidva 3155 . . . . . . . . . . . . . 14 (𝜑 → (∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4235, 41bitrid 283 . . . . . . . . . . . . 13 (𝜑 → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4342anbi2d 630 . . . . . . . . . . . 12 (𝜑 → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4443adantr 480 . . . . . . . . . . 11 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4544biimpa 476 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
46 ptclsg.1 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝑆AC 𝐴)
4746ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑘𝐴 𝑆AC 𝐴)
48 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝜑)
49 vex 3454 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
5049elixp 8880 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)))
5150simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
5251ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
539clsndisj 22969 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) ∧ ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘))) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
5453ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
55543expia 1121 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
564, 8, 55syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5756ralimdva 3146 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5848, 52, 57sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
59 simprlr 779 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)
60 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑦𝐴 (𝑔𝑦))
6132cbvixpv 8891 . . . . . . . . . . . . . . . . . . 19 X𝑦𝐴 (𝑔𝑦) = X𝑘𝐴 (𝑔𝑘)
6260, 61eleqtrdi 2839 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑘𝐴 (𝑔𝑘))
6349elixp 8880 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝐴 (𝑔𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6463simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑓X𝑘𝐴 (𝑔𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
6562, 64syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
66 r19.26 3092 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) ↔ (∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6759, 65, 66sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)))
68 ralim 3070 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅) → (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
6958, 67, 68sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
70 rabn0 4355 . . . . . . . . . . . . . . . . 17 ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
71 dfin5 3925 . . . . . . . . . . . . . . . . . . 19 ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)}
72 inss2 4204 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑆
73 ssiun2 5014 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐴𝑆 𝑘𝐴 𝑆)
7472, 73sstrid 3961 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴 → ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆)
75 sseqin2 4189 . . . . . . . . . . . . . . . . . . . 20 (((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆 ↔ ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7674, 75sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 → ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7771, 76eqtr3id 2779 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 → {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} = ((𝑔𝑘) ∩ 𝑆))
7877neeq1d 2985 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 → ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
7970, 78bitr3id 285 . . . . . . . . . . . . . . . 16 (𝑘𝐴 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
8079ralbiia 3074 . . . . . . . . . . . . . . 15 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
8169, 80sylibr 234 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
82 nfv 1914 . . . . . . . . . . . . . . 15 𝑦𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)
83 nfiu1 4994 . . . . . . . . . . . . . . . 16 𝑘 𝑘𝐴 𝑆
84 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑘(𝑔𝑦)
85 nfcsb1v 3889 . . . . . . . . . . . . . . . . . 18 𝑘𝑦 / 𝑘𝑆
8684, 85nfin 4190 . . . . . . . . . . . . . . . . 17 𝑘((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8786nfel2 2911 . . . . . . . . . . . . . . . 16 𝑘 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8883, 87nfrexw 3289 . . . . . . . . . . . . . . 15 𝑘𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
89 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑔𝑘) = (𝑔𝑦))
90 csbeq1a 3879 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
9189, 90ineq12d 4187 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → ((𝑔𝑘) ∩ 𝑆) = ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9291eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9392rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9482, 88, 93cbvralw 3282 . . . . . . . . . . . . . 14 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9581, 94sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
96 eleq1 2817 . . . . . . . . . . . . . 14 (𝑧 = (𝑦) → (𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9796acni3 10007 . . . . . . . . . . . . 13 (( 𝑘𝐴 𝑆AC 𝐴 ∧ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9847, 95, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
99 ffn 6691 . . . . . . . . . . . . . 14 (:𝐴 𝑘𝐴 𝑆 Fn 𝐴)
100 nfv 1914 . . . . . . . . . . . . . . . 16 𝑦(𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)
10186nfel2 2911 . . . . . . . . . . . . . . . 16 𝑘(𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
102 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (𝑘) = (𝑦))
103102, 91eleq12d 2823 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → ((𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
104100, 101, 103cbvralw 3282 . . . . . . . . . . . . . . 15 (∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
105 ne0i 4307 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) → X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
106 vex 3454 . . . . . . . . . . . . . . . . 17 ∈ V
107106elixp 8880 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ↔ ( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)))
108 ixpin 8899 . . . . . . . . . . . . . . . . . 18 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
10961ineq1i 4182 . . . . . . . . . . . . . . . . . 18 (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
110108, 109eqtr4i 2756 . . . . . . . . . . . . . . . . 17 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆)
111110neeq1i 2990 . . . . . . . . . . . . . . . 16 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
112105, 107, 1113imtr3i 291 . . . . . . . . . . . . . . 15 (( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
113104, 112sylan2br 595 . . . . . . . . . . . . . 14 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11499, 113sylan 580 . . . . . . . . . . . . 13 ((:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
115114exlimiv 1930 . . . . . . . . . . . 12 (∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11698, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
117116expr 456 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
11845, 117syldan 591 . . . . . . . . 9 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
1191183adantr3 1172 . . . . . . . 8 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
120 eleq2 2818 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢𝑓X𝑦𝐴 (𝑔𝑦)))
121 ineq1 4179 . . . . . . . . . 10 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑢X𝑘𝐴 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆))
122121neeq1d 2985 . . . . . . . . 9 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑢X𝑘𝐴 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
123120, 122imbi12d 344 . . . . . . . 8 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅) ↔ (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)))
124119, 123syl5ibrcom 247 . . . . . . 7 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
125124expimpd 453 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
126125exlimdv 1933 . . . . 5 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
12728, 126biimtrid 242 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
128127ralrimiv 3125 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅))
1294fmpttd 7090 . . . . . . . 8 (𝜑 → (𝑘𝐴𝑅):𝐴⟶Top)
130129ffnd 6692 . . . . . . 7 (𝜑 → (𝑘𝐴𝑅) Fn 𝐴)
131 eqid 2730 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
132131ptval 23464 . . . . . . 7 ((𝐴𝑉 ∧ (𝑘𝐴𝑅) Fn 𝐴) → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1331, 130, 132syl2anc 584 . . . . . 6 (𝜑 → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
13413, 133eqtrid 2777 . . . . 5 (𝜑𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
135134adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1362ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋))
13713pttopon 23490 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
1381, 136, 137syl2anc 584 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
139 toponuni 22808 . . . . . 6 (𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋) → X𝑘𝐴 𝑋 = 𝐽)
140138, 139syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑋 = 𝐽)
141140adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑋 = 𝐽)
142131ptbas 23473 . . . . . 6 ((𝐴𝑉 ∧ (𝑘𝐴𝑅):𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1431, 129, 142syl2anc 584 . . . . 5 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
144143adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1455ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑆𝑋)
146 ss2ixp 8886 . . . . . 6 (∀𝑘𝐴 𝑆𝑋X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
147145, 146syl 17 . . . . 5 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
148147adantr 480 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
1499clsss3 22953 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
1504, 8, 149syl2anc 584 . . . . . . . 8 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
151150, 7sseqtrrd 3987 . . . . . . 7 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
152151ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
153 ss2ixp 8886 . . . . . 6 (∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
154152, 153syl 17 . . . . 5 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
155154sselda 3949 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓X𝑘𝐴 𝑋)
156135, 141, 144, 148, 155elcls3 22977 . . 3 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆) ↔ ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
157128, 156mpbird 257 . 2 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆))
15823, 157eqelssd 3971 1 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  csb 3865  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874   ciun 4958  cmpt 5191   Fn wfn 6509  wf 6510  cfv 6514  Xcixp 8873  Fincfn 8921  AC wacn 9898  topGenctg 17407  tcpt 17408  Topctop 22787  TopOnctopon 22804  TopBasesctb 22839  Clsdccld 22910  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1o 8437  df-2o 8438  df-map 8804  df-ixp 8874  df-en 8922  df-fin 8925  df-fi 9369  df-acn 9902  df-topgen 17413  df-pt 17414  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by:  ptcls  23510  dfac14  23512
  Copyright terms: Public domain W3C validator