| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp3 | Structured version Visualization version GIF version | ||
| Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| ralxp3.1 | ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp3 | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfv 1914 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 4 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | ralxp3.1 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | ralxp3f 8116 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 〈cotp 4597 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 df-iun 4957 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |