MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3 Structured version   Visualization version   GIF version

Theorem ralxp3 8162
Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypothesis
Ref Expression
ralxp3.1 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3
StepHypRef Expression
1 nfv 1912 . 2 𝑦𝜑
2 nfv 1912 . 2 𝑧𝜑
3 nfv 1912 . 2 𝑤𝜑
4 nfv 1912 . 2 𝑥𝜓
5 ralxp3.1 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
61, 2, 3, 4, 5ralxp3f 8161 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wral 3059  cotp 4639   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-iun 4998  df-opab 5211  df-xp 5695  df-rel 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator