Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralxp3 | Structured version Visualization version GIF version |
Description: Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.) |
Ref | Expression |
---|---|
ralxp3.1 | ⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralxp3 | ⊢ (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1918 | . 2 ⊢ Ⅎ𝑧𝜑 | |
4 | nfv 1918 | . 2 ⊢ Ⅎ𝑝𝜓 | |
5 | ralxp3.1 | . 2 ⊢ (𝑝 = 〈〈𝑥, 𝑦〉, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | ralxp3f 33588 | 1 ⊢ (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3063 〈cop 4564 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iun 4923 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |