MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3 Structured version   Visualization version   GIF version

Theorem ralxp3 8117
Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypothesis
Ref Expression
ralxp3.1 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3
StepHypRef Expression
1 nfv 1914 . 2 𝑦𝜑
2 nfv 1914 . 2 𝑧𝜑
3 nfv 1914 . 2 𝑤𝜑
4 nfv 1914 . 2 𝑥𝜓
5 ralxp3.1 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
61, 2, 3, 4, 5ralxp3f 8116 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3044  cotp 4597   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-iun 4957  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator