| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp3 | Structured version Visualization version GIF version | ||
| Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| ralxp3.1 | ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp3 | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1913 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfv 1913 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 4 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | ralxp3.1 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | ralxp3f 8163 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∀wral 3060 〈cotp 4633 × cxp 5682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-iun 4992 df-opab 5205 df-xp 5690 df-rel 5691 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |