MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3 Structured version   Visualization version   GIF version

Theorem ralxp3 8068
Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypothesis
Ref Expression
ralxp3.1 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3
StepHypRef Expression
1 nfv 1915 . 2 𝑦𝜑
2 nfv 1915 . 2 𝑧𝜑
3 nfv 1915 . 2 𝑤𝜑
4 nfv 1915 . 2 𝑥𝜓
5 ralxp3.1 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
61, 2, 3, 4, 5ralxp3f 8067 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wral 3047  cotp 4581   × cxp 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-ot 4582  df-iun 4941  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator