Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralxp3 Structured version   Visualization version   GIF version

Theorem ralxp3 33589
Description: Restricted for-all over a triple cross product. (Contributed by Scott Fenton, 21-Aug-2024.)
Hypothesis
Ref Expression
ralxp3.1 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3 (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Distinct variable groups:   𝐴,𝑝,𝑥,𝑦,𝑧   𝐵,𝑝,𝑥,𝑦,𝑧   𝐶,𝑝,𝑥,𝑦,𝑧   𝜓,𝑝   𝑥,𝑝,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑝)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem ralxp3
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜑
2 nfv 1918 . 2 𝑦𝜑
3 nfv 1918 . 2 𝑧𝜑
4 nfv 1918 . 2 𝑝𝜓
5 ralxp3.1 . 2 (𝑝 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ → (𝜑𝜓))
61, 2, 3, 4, 5ralxp3f 33588 1 (∀𝑝 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wral 3063  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator