MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3 Structured version   Visualization version   GIF version

Theorem ralxp3 8129
Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypothesis
Ref Expression
ralxp3.1 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3
StepHypRef Expression
1 nfv 1916 . 2 𝑦𝜑
2 nfv 1916 . 2 𝑧𝜑
3 nfv 1916 . 2 𝑤𝜑
4 nfv 1916 . 2 𝑥𝜓
5 ralxp3.1 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
61, 2, 3, 4, 5ralxp3f 8128 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wral 3060  cotp 4636   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-iun 4999  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator