| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp3 | Structured version Visualization version GIF version | ||
| Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| ralxp3.1 | ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxp3 | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 2 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfv 1915 | . 2 ⊢ Ⅎ𝑤𝜑 | |
| 4 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | ralxp3.1 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | ralxp3f 8067 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 〈cotp 4581 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-iun 4941 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |