MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3es Structured version   Visualization version   GIF version

Theorem ralxp3es 8148
Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
ralxp3es (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3es
StepHypRef Expression
1 nfsbc1v 3796 . 2 𝑦[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
2 nfcv 2898 . . 3 𝑧(1st ‘(1st𝑥))
3 nfsbc1v 3796 . . 3 𝑧[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
42, 3nfsbcw 3798 . 2 𝑧[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
5 nfcv 2898 . . 3 𝑤(1st ‘(1st𝑥))
6 nfcv 2898 . . . 4 𝑤(2nd ‘(1st𝑥))
7 nfsbc1v 3796 . . . 4 𝑤[(2nd𝑥) / 𝑤]𝜑
86, 7nfsbcw 3798 . . 3 𝑤[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
95, 8nfsbcw 3798 . 2 𝑤[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
10 nfv 1909 . 2 𝑥𝜑
11 sbcoteq1a 8059 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → ([(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑𝜑))
121, 4, 9, 10, 11ralxp3f 8146 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3057  [wsbc 3776   × cxp 5678  cfv 6551  1st c1st 7995  2nd c2nd 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-iota 6503  df-fun 6553  df-fv 6559  df-1st 7997  df-2nd 7998
This theorem is referenced by:  frpoins3xp3g  8150
  Copyright terms: Public domain W3C validator