MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3es Structured version   Visualization version   GIF version

Theorem ralxp3es 8118
Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
ralxp3es (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3es
StepHypRef Expression
1 nfsbc1v 3773 . 2 𝑦[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
2 nfcv 2891 . . 3 𝑧(1st ‘(1st𝑥))
3 nfsbc1v 3773 . . 3 𝑧[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
42, 3nfsbcw 3775 . 2 𝑧[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
5 nfcv 2891 . . 3 𝑤(1st ‘(1st𝑥))
6 nfcv 2891 . . . 4 𝑤(2nd ‘(1st𝑥))
7 nfsbc1v 3773 . . . 4 𝑤[(2nd𝑥) / 𝑤]𝜑
86, 7nfsbcw 3775 . . 3 𝑤[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
95, 8nfsbcw 3775 . 2 𝑤[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
10 nfv 1914 . 2 𝑥𝜑
11 sbcoteq1a 8030 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → ([(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑𝜑))
121, 4, 9, 10, 11ralxp3f 8116 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3044  [wsbc 3753   × cxp 5636  cfv 6511  1st c1st 7966  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-2nd 7969
This theorem is referenced by:  frpoins3xp3g  8120
  Copyright terms: Public domain W3C validator