| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp3es | Structured version Visualization version GIF version | ||
| Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| ralxp3es | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v 3807 | . 2 ⊢ Ⅎ𝑦[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
| 2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑧(1st ‘(1st ‘𝑥)) | |
| 3 | nfsbc1v 3807 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
| 4 | 2, 3 | nfsbcw 3809 | . 2 ⊢ Ⅎ𝑧[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 5 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑤(1st ‘(1st ‘𝑥)) | |
| 6 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑤(2nd ‘(1st ‘𝑥)) | |
| 7 | nfsbc1v 3807 | . . . 4 ⊢ Ⅎ𝑤[(2nd ‘𝑥) / 𝑤]𝜑 | |
| 8 | 6, 7 | nfsbcw 3809 | . . 3 ⊢ Ⅎ𝑤[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 9 | 5, 8 | nfsbcw 3809 | . 2 ⊢ Ⅎ𝑤[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 10 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 11 | sbcoteq1a 8077 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → ([(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ 𝜑)) | |
| 12 | 1, 4, 9, 10, 11 | ralxp3f 8163 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3060 [wsbc 3787 × cxp 5682 ‘cfv 6560 1st c1st 8013 2nd c2nd 8014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fv 6568 df-1st 8015 df-2nd 8016 |
| This theorem is referenced by: frpoins3xp3g 8167 |
| Copyright terms: Public domain | W3C validator |