| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralxp3es | Structured version Visualization version GIF version | ||
| Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| ralxp3es | ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v 3762 | . 2 ⊢ Ⅎ𝑦[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑧(1st ‘(1st ‘𝑥)) | |
| 3 | nfsbc1v 3762 | . . 3 ⊢ Ⅎ𝑧[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 | |
| 4 | 2, 3 | nfsbcw 3764 | . 2 ⊢ Ⅎ𝑧[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 5 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑤(1st ‘(1st ‘𝑥)) | |
| 6 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑤(2nd ‘(1st ‘𝑥)) | |
| 7 | nfsbc1v 3762 | . . . 4 ⊢ Ⅎ𝑤[(2nd ‘𝑥) / 𝑤]𝜑 | |
| 8 | 6, 7 | nfsbcw 3764 | . . 3 ⊢ Ⅎ𝑤[(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 9 | 5, 8 | nfsbcw 3764 | . 2 ⊢ Ⅎ𝑤[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 |
| 10 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 11 | sbcoteq1a 7986 | . 2 ⊢ (𝑥 = 〈𝑦, 𝑧, 𝑤〉 → ([(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ 𝜑)) | |
| 12 | 1, 4, 9, 10, 11 | ralxp3f 8070 | 1 ⊢ (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st ‘𝑥)) / 𝑦][(2nd ‘(1st ‘𝑥)) / 𝑧][(2nd ‘𝑥) / 𝑤]𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 [wsbc 3742 × cxp 5617 ‘cfv 6482 1st c1st 7922 2nd c2nd 7923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-ot 4586 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-2nd 7925 |
| This theorem is referenced by: frpoins3xp3g 8074 |
| Copyright terms: Public domain | W3C validator |