MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3es Structured version   Visualization version   GIF version

Theorem ralxp3es 8163
Description: Restricted for-all over a triple Cartesian product with explicit substitution. (Contributed by Scott Fenton, 22-Aug-2024.)
Assertion
Ref Expression
ralxp3es (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)

Proof of Theorem ralxp3es
StepHypRef Expression
1 nfsbc1v 3811 . 2 𝑦[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
2 nfcv 2903 . . 3 𝑧(1st ‘(1st𝑥))
3 nfsbc1v 3811 . . 3 𝑧[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
42, 3nfsbcw 3813 . 2 𝑧[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
5 nfcv 2903 . . 3 𝑤(1st ‘(1st𝑥))
6 nfcv 2903 . . . 4 𝑤(2nd ‘(1st𝑥))
7 nfsbc1v 3811 . . . 4 𝑤[(2nd𝑥) / 𝑤]𝜑
86, 7nfsbcw 3813 . . 3 𝑤[(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
95, 8nfsbcw 3813 . 2 𝑤[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑
10 nfv 1912 . 2 𝑥𝜑
11 sbcoteq1a 8075 . 2 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → ([(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑𝜑))
121, 4, 9, 10, 11ralxp3f 8161 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)[(1st ‘(1st𝑥)) / 𝑦][(2nd ‘(1st𝑥)) / 𝑧][(2nd𝑥) / 𝑤]𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wral 3059  [wsbc 3791   × cxp 5687  cfv 6563  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by:  frpoins3xp3g  8165
  Copyright terms: Public domain W3C validator