![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrcnvg | Structured version Visualization version GIF version |
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5509 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
relbrcnvg | ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5721 | . . . 4 ⊢ Rel ◡𝑅 | |
2 | 1 | brrelex12i 5363 | . . 3 ⊢ (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | 2 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
4 | brrelex12 5360 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
5 | 4 | ancomd 454 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | 5 | ex 402 | . 2 ⊢ (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
7 | brcnvg 5506 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴))) |
9 | 3, 6, 8 | pm5.21ndd 371 | 1 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 Vcvv 3386 class class class wbr 4844 ◡ccnv 5312 Rel wrel 5318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-br 4845 df-opab 4907 df-xp 5319 df-rel 5320 df-cnv 5321 |
This theorem is referenced by: eliniseg2 5723 relbrcnv 5724 isinv 16733 releleccnv 34520 relcnveq2 34587 elrelscnveq2 34736 eqvrelsym 34840 brco2f1o 39107 brco3f1o 39108 ntrclsnvobr 39127 neicvgel1 39194 |
Copyright terms: Public domain | W3C validator |