MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnvg Structured version   Visualization version   GIF version

Theorem relbrcnvg 6023
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5804 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 6022 . . . 4 Rel 𝑅
21brrelex12i 5653 . . 3 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32a1i 11 . 2 (Rel 𝑅 → (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
4 brrelex12 5650 . . . 4 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
54ancomd 463 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65ex 414 . 2 (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
7 brcnvg 5801 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
87a1i 11 . 2 (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
93, 6, 8pm5.21ndd 381 1 (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  Vcvv 3437   class class class wbr 5081  ccnv 5599  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608
This theorem is referenced by:  eliniseg2  6024  relbrcnv  6025  isinv  17517  releleccnv  36439  relcnveq2  36500  elrelscnveq2  36653  eqvrelsym  36760  brco2f1o  41680  brco3f1o  41681  ntrclsnvobr  41700  neicvgel1  41767
  Copyright terms: Public domain W3C validator