MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnvg Structured version   Visualization version   GIF version

Theorem relbrcnvg 6135
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5907 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 6134 . . . 4 Rel 𝑅
21brrelex12i 5755 . . 3 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32a1i 11 . 2 (Rel 𝑅 → (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
4 brrelex12 5752 . . . 4 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
54ancomd 461 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65ex 412 . 2 (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
7 brcnvg 5904 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
87a1i 11 . 2 (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
93, 6, 8pm5.21ndd 379 1 (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  eliniseg2  6136  relbrcnv  6137  isinv  17821  releleccnv  38213  relcnveq2  38279  elrelscnveq2  38449  eqvrelsym  38561  brco2f1o  43994  brco3f1o  43995  ntrclsnvobr  44014  neicvgel1  44081
  Copyright terms: Public domain W3C validator