| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relbrcnvg | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5836 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| relbrcnvg | ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6064 | . . . 4 ⊢ Rel ◡𝑅 | |
| 2 | 1 | brrelex12i 5686 | . . 3 ⊢ (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | 2 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 4 | brrelex12 5683 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
| 5 | 4 | ancomd 461 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 6 | 5 | ex 412 | . 2 ⊢ (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 7 | brcnvg 5833 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴))) |
| 9 | 3, 6, 8 | pm5.21ndd 379 | 1 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ◡ccnv 5630 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: eliniseg2 6066 relbrcnv 6067 isinv 17702 releleccnv 38239 relcnveq2 38304 elrelscnveq2 38477 eqvrelsym 38589 brco2f1o 44014 brco3f1o 44015 ntrclsnvobr 44034 neicvgel1 44101 |
| Copyright terms: Public domain | W3C validator |