![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relbrcnvg | Structured version Visualization version GIF version |
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5537 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
relbrcnvg | ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5744 | . . . 4 ⊢ Rel ◡𝑅 | |
2 | 1 | brrelex12i 5392 | . . 3 ⊢ (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | 2 | a1i 11 | . 2 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
4 | brrelex12 5389 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V)) | |
5 | 4 | ancomd 455 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | 5 | ex 403 | . 2 ⊢ (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
7 | brcnvg 5534 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
8 | 7 | a1i 11 | . 2 ⊢ (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴))) |
9 | 3, 6, 8 | pm5.21ndd 371 | 1 ⊢ (Rel 𝑅 → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2166 Vcvv 3414 class class class wbr 4873 ◡ccnv 5341 Rel wrel 5347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-xp 5348 df-rel 5349 df-cnv 5350 |
This theorem is referenced by: eliniseg2 5746 relbrcnv 5747 isinv 16772 releleccnv 34575 relcnveq2 34642 elrelscnveq2 34791 eqvrelsym 34895 brco2f1o 39170 brco3f1o 39171 ntrclsnvobr 39190 neicvgel1 39257 |
Copyright terms: Public domain | W3C validator |