MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnvg Structured version   Visualization version   GIF version

Theorem relbrcnvg 6110
Description: When 𝑅 is a relation, the sethood assumptions on brcnv 5885 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
relbrcnvg (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem relbrcnvg
StepHypRef Expression
1 relcnv 6109 . . . 4 Rel 𝑅
21brrelex12i 5733 . . 3 (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
32a1i 11 . 2 (Rel 𝑅 → (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
4 brrelex12 5730 . . . 4 ((Rel 𝑅𝐵𝑅𝐴) → (𝐵 ∈ V ∧ 𝐴 ∈ V))
54ancomd 460 . . 3 ((Rel 𝑅𝐵𝑅𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65ex 411 . 2 (Rel 𝑅 → (𝐵𝑅𝐴 → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
7 brcnvg 5882 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴))
87a1i 11 . 2 (Rel 𝑅 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
93, 6, 8pm5.21ndd 378 1 (Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  Vcvv 3461   class class class wbr 5149  ccnv 5677  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by:  eliniseg2  6111  relbrcnv  6112  isinv  17746  releleccnv  37859  relcnveq2  37925  elrelscnveq2  38095  eqvrelsym  38207  brco2f1o  43604  brco3f1o  43605  ntrclsnvobr  43624  neicvgel1  43691
  Copyright terms: Public domain W3C validator