Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1frcl | Structured version Visualization version GIF version |
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
Ref | Expression |
---|---|
ply1frcl.q | ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) |
Ref | Expression |
---|---|
ply1frcl | ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4235 | . . 3 ⊢ (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅) | |
2 | ply1frcl.q | . . 3 ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) | |
3 | 1, 2 | eleq2s 2870 | . 2 ⊢ (𝑋 ∈ 𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅) |
4 | rneq 5782 | . . . 4 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅) | |
5 | rn0 5772 | . . . 4 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2809 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅) |
7 | 6 | necon3i 2983 | . 2 ⊢ (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅) |
8 | n0 4247 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅)) | |
9 | df-evls1 21047 | . . . . . . 7 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
10 | 9 | dmmpossx 7774 | . . . . . 6 ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) |
11 | elfvdm 6695 | . . . . . . 7 ⊢ (𝑒 ∈ ( evalSub1 ‘〈𝑆, 𝑅〉) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) | |
12 | df-ov 7159 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = ( evalSub1 ‘〈𝑆, 𝑅〉) | |
13 | 11, 12 | eleq2s 2870 | . . . . . 6 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) |
14 | 10, 13 | sseldi 3892 | . . . . 5 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))) |
15 | fveq2 6663 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | |
16 | 15 | pweqd 4516 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆)) |
17 | 16 | opeliunxp2 5684 | . . . . 5 ⊢ (〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
18 | 14, 17 | sylib 221 | . . . 4 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
19 | 18 | exlimiv 1931 | . . 3 ⊢ (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
20 | 8, 19 | sylbi 220 | . 2 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
21 | 3, 7, 20 | 3syl 18 | 1 ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 Vcvv 3409 ⦋csb 3807 ∅c0 4227 𝒫 cpw 4497 {csn 4525 〈cop 4531 ∪ ciun 4886 ↦ cmpt 5116 × cxp 5526 dom cdm 5528 ran crn 5529 ∘ ccom 5532 ‘cfv 6340 (class class class)co 7156 1oc1o 8111 ↑m cmap 8422 Basecbs 16554 evalSub ces 20846 evalSub1 ces1 21045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-evls1 21047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |