![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1frcl | Structured version Visualization version GIF version |
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
Ref | Expression |
---|---|
ply1frcl.q | ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) |
Ref | Expression |
---|---|
ply1frcl | ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4329 | . . 3 ⊢ (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅) | |
2 | ply1frcl.q | . . 3 ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) | |
3 | 1, 2 | eleq2s 2845 | . 2 ⊢ (𝑋 ∈ 𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅) |
4 | rneq 5929 | . . . 4 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅) | |
5 | rn0 5919 | . . . 4 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | eqtrdi 2782 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅) |
7 | 6 | necon3i 2967 | . 2 ⊢ (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅) |
8 | n0 4341 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅)) | |
9 | df-evls1 22189 | . . . . . . 7 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
10 | 9 | dmmpossx 8051 | . . . . . 6 ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) |
11 | elfvdm 6922 | . . . . . . 7 ⊢ (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 ) | |
12 | df-ov 7408 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩) | |
13 | 11, 12 | eleq2s 2845 | . . . . . 6 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 ) |
14 | 10, 13 | sselid 3975 | . . . . 5 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))) |
15 | fveq2 6885 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | |
16 | 15 | pweqd 4614 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆)) |
17 | 16 | opeliunxp2 5832 | . . . . 5 ⊢ (⟨𝑆, 𝑅⟩ ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
18 | 14, 17 | sylib 217 | . . . 4 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
19 | 18 | exlimiv 1925 | . . 3 ⊢ (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
20 | 8, 19 | sylbi 216 | . 2 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
21 | 3, 7, 20 | 3syl 18 | 1 ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⦋csb 3888 ∅c0 4317 𝒫 cpw 4597 {csn 4623 ⟨cop 4629 ∪ ciun 4990 ↦ cmpt 5224 × cxp 5667 dom cdm 5669 ran crn 5670 ∘ ccom 5673 ‘cfv 6537 (class class class)co 7405 1oc1o 8460 ↑m cmap 8822 Basecbs 17153 evalSub ces 21975 evalSub1 ces1 22187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-evls1 22189 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |