MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   GIF version

Theorem ply1frcl 20483
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q 𝑄 = ran (𝑆 evalSub1 𝑅)
Assertion
Ref Expression
ply1frcl (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))

Proof of Theorem ply1frcl
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4302 . . 3 (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅)
2 ply1frcl.q . . 3 𝑄 = ran (𝑆 evalSub1 𝑅)
31, 2eleq2s 2933 . 2 (𝑋𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅)
4 rneq 5808 . . . 4 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅)
5 rn0 5798 . . . 4 ran ∅ = ∅
64, 5syl6eq 2874 . . 3 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅)
76necon3i 3050 . 2 (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅)
8 n0 4312 . . 3 ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅))
9 df-evls1 20480 . . . . . . 7 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
109dmmpossx 7766 . . . . . 6 dom evalSub1 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))
11 elfvdm 6704 . . . . . . 7 (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
12 df-ov 7161 . . . . . . 7 (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩)
1311, 12eleq2s 2933 . . . . . 6 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
1410, 13sseldi 3967 . . . . 5 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)))
15 fveq2 6672 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1615pweqd 4560 . . . . . 6 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆))
1716opeliunxp2 5711 . . . . 5 (⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1814, 17sylib 220 . . . 4 (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1918exlimiv 1931 . . 3 (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
208, 19sylbi 219 . 2 ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
213, 7, 203syl 18 1 (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  Vcvv 3496  csb 3885  c0 4293  𝒫 cpw 4541  {csn 4569  cop 4575   ciun 4921  cmpt 5148   × cxp 5555  dom cdm 5557  ran crn 5558  ccom 5561  cfv 6357  (class class class)co 7158  1oc1o 8097  m cmap 8408  Basecbs 16485   evalSub ces 20286   evalSub1 ces1 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-evls1 20480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator