MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   GIF version

Theorem ply1frcl 22212
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q 𝑄 = ran (𝑆 evalSub1 𝑅)
Assertion
Ref Expression
ply1frcl (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))

Proof of Theorem ply1frcl
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4307 . . 3 (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅)
2 ply1frcl.q . . 3 𝑄 = ran (𝑆 evalSub1 𝑅)
31, 2eleq2s 2847 . 2 (𝑋𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅)
4 rneq 5903 . . . 4 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅)
5 rn0 5892 . . . 4 ran ∅ = ∅
64, 5eqtrdi 2781 . . 3 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅)
76necon3i 2958 . 2 (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅)
8 n0 4319 . . 3 ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅))
9 df-evls1 22209 . . . . . . 7 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
109dmmpossx 8048 . . . . . 6 dom evalSub1 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))
11 elfvdm 6898 . . . . . . 7 (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
12 df-ov 7393 . . . . . . 7 (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩)
1311, 12eleq2s 2847 . . . . . 6 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
1410, 13sselid 3947 . . . . 5 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)))
15 fveq2 6861 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1615pweqd 4583 . . . . . 6 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆))
1716opeliunxp2 5805 . . . . 5 (⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1814, 17sylib 218 . . . 4 (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1918exlimiv 1930 . . 3 (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
208, 19sylbi 217 . 2 ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
213, 7, 203syl 18 1 (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  csb 3865  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   ciun 4958  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  ccom 5645  cfv 6514  (class class class)co 7390  1oc1o 8430  m cmap 8802  Basecbs 17186   evalSub ces 21986   evalSub1 ces1 22207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-evls1 22209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator