| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1frcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
| Ref | Expression |
|---|---|
| ply1frcl.q | ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) |
| Ref | Expression |
|---|---|
| ply1frcl | ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4304 | . . 3 ⊢ (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅) | |
| 2 | ply1frcl.q | . . 3 ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) | |
| 3 | 1, 2 | eleq2s 2846 | . 2 ⊢ (𝑋 ∈ 𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅) |
| 4 | rneq 5900 | . . . 4 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅) | |
| 5 | rn0 5889 | . . . 4 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅) |
| 7 | 6 | necon3i 2957 | . 2 ⊢ (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅) |
| 8 | n0 4316 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅)) | |
| 9 | df-evls1 22202 | . . . . . . 7 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
| 10 | 9 | dmmpossx 8045 | . . . . . 6 ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) |
| 11 | elfvdm 6895 | . . . . . . 7 ⊢ (𝑒 ∈ ( evalSub1 ‘〈𝑆, 𝑅〉) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) | |
| 12 | df-ov 7390 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = ( evalSub1 ‘〈𝑆, 𝑅〉) | |
| 13 | 11, 12 | eleq2s 2846 | . . . . . 6 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) |
| 14 | 10, 13 | sselid 3944 | . . . . 5 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))) |
| 15 | fveq2 6858 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | |
| 16 | 15 | pweqd 4580 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆)) |
| 17 | 16 | opeliunxp2 5802 | . . . . 5 ⊢ (〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 18 | 14, 17 | sylib 218 | . . . 4 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 19 | 18 | exlimiv 1930 | . . 3 ⊢ (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 20 | 8, 19 | sylbi 217 | . 2 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 21 | 3, 7, 20 | 3syl 18 | 1 ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⦋csb 3862 ∅c0 4296 𝒫 cpw 4563 {csn 4589 〈cop 4595 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 dom cdm 5638 ran crn 5639 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 Basecbs 17179 evalSub ces 21979 evalSub1 ces1 22200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-evls1 22202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |