| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1frcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
| Ref | Expression |
|---|---|
| ply1frcl.q | ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) |
| Ref | Expression |
|---|---|
| ply1frcl | ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4316 | . . 3 ⊢ (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅) | |
| 2 | ply1frcl.q | . . 3 ⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) | |
| 3 | 1, 2 | eleq2s 2852 | . 2 ⊢ (𝑋 ∈ 𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅) |
| 4 | rneq 5916 | . . . 4 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅) | |
| 5 | rn0 5905 | . . . 4 ⊢ ran ∅ = ∅ | |
| 6 | 4, 5 | eqtrdi 2786 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅) |
| 7 | 6 | necon3i 2964 | . 2 ⊢ (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅) |
| 8 | n0 4328 | . . 3 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅)) | |
| 9 | df-evls1 22253 | . . . . . . 7 ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | |
| 10 | 9 | dmmpossx 8065 | . . . . . 6 ⊢ dom evalSub1 ⊆ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) |
| 11 | elfvdm 6913 | . . . . . . 7 ⊢ (𝑒 ∈ ( evalSub1 ‘〈𝑆, 𝑅〉) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) | |
| 12 | df-ov 7408 | . . . . . . 7 ⊢ (𝑆 evalSub1 𝑅) = ( evalSub1 ‘〈𝑆, 𝑅〉) | |
| 13 | 11, 12 | eleq2s 2852 | . . . . . 6 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ dom evalSub1 ) |
| 14 | 10, 13 | sselid 3956 | . . . . 5 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → 〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))) |
| 15 | fveq2 6876 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | |
| 16 | 15 | pweqd 4592 | . . . . . 6 ⊢ (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆)) |
| 17 | 16 | opeliunxp2 5818 | . . . . 5 ⊢ (〈𝑆, 𝑅〉 ∈ ∪ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 18 | 14, 17 | sylib 218 | . . . 4 ⊢ (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 19 | 18 | exlimiv 1930 | . . 3 ⊢ (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 20 | 8, 19 | sylbi 217 | . 2 ⊢ ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| 21 | 3, 7, 20 | 3syl 18 | 1 ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⦋csb 3874 ∅c0 4308 𝒫 cpw 4575 {csn 4601 〈cop 4607 ∪ ciun 4967 ↦ cmpt 5201 × cxp 5652 dom cdm 5654 ran crn 5655 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 ↑m cmap 8840 Basecbs 17228 evalSub ces 22030 evalSub1 ces1 22251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-evls1 22253 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |