MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1frcl Structured version   Visualization version   GIF version

Theorem ply1frcl 20942
Description: Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.)
Hypothesis
Ref Expression
ply1frcl.q 𝑄 = ran (𝑆 evalSub1 𝑅)
Assertion
Ref Expression
ply1frcl (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))

Proof of Theorem ply1frcl
Dummy variables 𝑟 𝑏 𝑠 𝑥 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ne0i 4250 . . 3 (𝑋 ∈ ran (𝑆 evalSub1 𝑅) → ran (𝑆 evalSub1 𝑅) ≠ ∅)
2 ply1frcl.q . . 3 𝑄 = ran (𝑆 evalSub1 𝑅)
31, 2eleq2s 2908 . 2 (𝑋𝑄 → ran (𝑆 evalSub1 𝑅) ≠ ∅)
4 rneq 5770 . . . 4 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ran ∅)
5 rn0 5760 . . . 4 ran ∅ = ∅
64, 5eqtrdi 2849 . . 3 ((𝑆 evalSub1 𝑅) = ∅ → ran (𝑆 evalSub1 𝑅) = ∅)
76necon3i 3019 . 2 (ran (𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 evalSub1 𝑅) ≠ ∅)
8 n0 4260 . . 3 ((𝑆 evalSub1 𝑅) ≠ ∅ ↔ ∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅))
9 df-evls1 20939 . . . . . . 7 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
109dmmpossx 7746 . . . . . 6 dom evalSub1 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠))
11 elfvdm 6677 . . . . . . 7 (𝑒 ∈ ( evalSub1 ‘⟨𝑆, 𝑅⟩) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
12 df-ov 7138 . . . . . . 7 (𝑆 evalSub1 𝑅) = ( evalSub1 ‘⟨𝑆, 𝑅⟩)
1311, 12eleq2s 2908 . . . . . 6 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ dom evalSub1 )
1410, 13sseldi 3913 . . . . 5 (𝑒 ∈ (𝑆 evalSub1 𝑅) → ⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)))
15 fveq2 6645 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1615pweqd 4516 . . . . . 6 (𝑠 = 𝑆 → 𝒫 (Base‘𝑠) = 𝒫 (Base‘𝑆))
1716opeliunxp2 5673 . . . . 5 (⟨𝑆, 𝑅⟩ ∈ 𝑠 ∈ V ({𝑠} × 𝒫 (Base‘𝑠)) ↔ (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1814, 17sylib 221 . . . 4 (𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
1918exlimiv 1931 . . 3 (∃𝑒 𝑒 ∈ (𝑆 evalSub1 𝑅) → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
208, 19sylbi 220 . 2 ((𝑆 evalSub1 𝑅) ≠ ∅ → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
213, 7, 203syl 18 1 (𝑋𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  Vcvv 3441  csb 3828  c0 4243  𝒫 cpw 4497  {csn 4525  cop 4531   ciun 4881  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  ccom 5523  cfv 6324  (class class class)co 7135  1oc1o 8078  m cmap 8389  Basecbs 16475   evalSub ces 20743   evalSub1 ces1 20937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-evls1 20939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator