MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1 Structured version   Visualization version   GIF version

Theorem evl1fval1 22241
Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1 𝑄 = (𝑅 evalSub1 𝐵)

Proof of Theorem evl1fval1
StepHypRef Expression
1 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
2 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
31, 2evl1fval1lem 22240 . 2 (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
4 fvprc 6809 . . . 4 𝑅 ∈ V → (eval1𝑅) = ∅)
51, 4eqtrid 2778 . . 3 𝑅 ∈ V → 𝑄 = ∅)
6 reldmevls1 22227 . . . 4 Rel dom evalSub1
76ovprc1 7380 . . 3 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅)
85, 7eqtr4d 2769 . 2 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
93, 8pm2.61i 182 1 𝑄 = (𝑅 evalSub1 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  cfv 6476  (class class class)co 7341  Basecbs 17115   evalSub1 ces1 22223  eval1ce1 22224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-evls 22004  df-evl 22005  df-evls1 22225  df-evl1 22226
This theorem is referenced by:  evls1scasrng  22249  evls1varsrng  22250  evl1gsumadd  22268  evl1varpw  22271  ressply1evl  22280  evl1maprhm  22289  evl1fpws  33519  cos9thpiminply  33793
  Copyright terms: Public domain W3C validator