![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1fval1 | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1fval1 | ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1lem 22355 | . 2 ⊢ (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
4 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (eval1‘𝑅) = ∅) | |
5 | 1, 4 | eqtrid 2792 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑄 = ∅) |
6 | reldmevls1 22342 | . . . 4 ⊢ Rel dom evalSub1 | |
7 | 6 | ovprc1 7487 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅) |
8 | 5, 7 | eqtr4d 2783 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
9 | 3, 8 | pm2.61i 182 | 1 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 evalSub1 ces1 22338 eval1ce1 22339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-evls 22121 df-evl 22122 df-evls1 22340 df-evl1 22341 |
This theorem is referenced by: evls1scasrng 22364 evls1varsrng 22365 evl1gsumadd 22383 evl1varpw 22386 ressply1evl 22395 evl1maprhm 22404 evl1fpws 33555 |
Copyright terms: Public domain | W3C validator |