MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1 Structured version   Visualization version   GIF version

Theorem evl1fval1 21407
Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1 𝑄 = (𝑅 evalSub1 𝐵)

Proof of Theorem evl1fval1
StepHypRef Expression
1 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
2 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
31, 2evl1fval1lem 21406 . 2 (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
4 fvprc 6748 . . . 4 𝑅 ∈ V → (eval1𝑅) = ∅)
51, 4eqtrid 2790 . . 3 𝑅 ∈ V → 𝑄 = ∅)
6 reldmevls1 21393 . . . 4 Rel dom evalSub1
76ovprc1 7294 . . 3 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅)
85, 7eqtr4d 2781 . 2 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
93, 8pm2.61i 182 1 𝑄 = (𝑅 evalSub1 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  (class class class)co 7255  Basecbs 16840   evalSub1 ces1 21389  eval1ce1 21390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-evls 21192  df-evl 21193  df-evls1 21391  df-evl1 21392
This theorem is referenced by:  evls1scasrng  21415  evls1varsrng  21416  evl1gsumadd  21434  evl1varpw  21437
  Copyright terms: Public domain W3C validator