MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1 Structured version   Visualization version   GIF version

Theorem evl1fval1 22216
Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1 𝑄 = (𝑅 evalSub1 𝐵)

Proof of Theorem evl1fval1
StepHypRef Expression
1 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
2 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
31, 2evl1fval1lem 22215 . 2 (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
4 fvprc 6814 . . . 4 𝑅 ∈ V → (eval1𝑅) = ∅)
51, 4eqtrid 2776 . . 3 𝑅 ∈ V → 𝑄 = ∅)
6 reldmevls1 22202 . . . 4 Rel dom evalSub1
76ovprc1 7388 . . 3 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅)
85, 7eqtr4d 2767 . 2 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
93, 8pm2.61i 182 1 𝑄 = (𝑅 evalSub1 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  cfv 6482  (class class class)co 7349  Basecbs 17120   evalSub1 ces1 22198  eval1ce1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-evls 21979  df-evl 21980  df-evls1 22200  df-evl1 22201
This theorem is referenced by:  evls1scasrng  22224  evls1varsrng  22225  evl1gsumadd  22243  evl1varpw  22246  ressply1evl  22255  evl1maprhm  22264  evl1fpws  33499  cos9thpiminply  33755
  Copyright terms: Public domain W3C validator