MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1 Structured version   Visualization version   GIF version

Theorem evl1fval1 22356
Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1 𝑄 = (𝑅 evalSub1 𝐵)

Proof of Theorem evl1fval1
StepHypRef Expression
1 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
2 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
31, 2evl1fval1lem 22355 . 2 (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
4 fvprc 6912 . . . 4 𝑅 ∈ V → (eval1𝑅) = ∅)
51, 4eqtrid 2792 . . 3 𝑅 ∈ V → 𝑄 = ∅)
6 reldmevls1 22342 . . . 4 Rel dom evalSub1
76ovprc1 7487 . . 3 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅)
85, 7eqtr4d 2783 . 2 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵))
93, 8pm2.61i 182 1 𝑄 = (𝑅 evalSub1 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258   evalSub1 ces1 22338  eval1ce1 22339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-evls 22121  df-evl 22122  df-evls1 22340  df-evl1 22341
This theorem is referenced by:  evls1scasrng  22364  evls1varsrng  22365  evl1gsumadd  22383  evl1varpw  22386  ressply1evl  22395  evl1maprhm  22404  evl1fpws  33555
  Copyright terms: Public domain W3C validator