| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1fval1 | Structured version Visualization version GIF version | ||
| Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| evl1fval1 | ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | evl1fval1lem 22193 | . 2 ⊢ (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
| 4 | fvprc 6832 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (eval1‘𝑅) = ∅) | |
| 5 | 1, 4 | eqtrid 2776 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑄 = ∅) |
| 6 | reldmevls1 22180 | . . . 4 ⊢ Rel dom evalSub1 | |
| 7 | 6 | ovprc1 7408 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅) |
| 8 | 5, 7 | eqtr4d 2767 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
| 9 | 3, 8 | pm2.61i 182 | 1 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 evalSub1 ces1 22176 eval1ce1 22177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-evls 21957 df-evl 21958 df-evls1 22178 df-evl1 22179 |
| This theorem is referenced by: evls1scasrng 22202 evls1varsrng 22203 evl1gsumadd 22221 evl1varpw 22224 ressply1evl 22233 evl1maprhm 22242 evl1fpws 33506 cos9thpiminply 33751 |
| Copyright terms: Public domain | W3C validator |