| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1fval1 | Structured version Visualization version GIF version | ||
| Description: Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| evl1fval1 | ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | evl1fval1lem 22224 | . 2 ⊢ (𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
| 4 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (eval1‘𝑅) = ∅) | |
| 5 | 1, 4 | eqtrid 2777 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑄 = ∅) |
| 6 | reldmevls1 22211 | . . . 4 ⊢ Rel dom evalSub1 | |
| 7 | 6 | ovprc1 7429 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑅 evalSub1 𝐵) = ∅) |
| 8 | 5, 7 | eqtr4d 2768 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑄 = (𝑅 evalSub1 𝐵)) |
| 9 | 3, 8 | pm2.61i 182 | 1 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 evalSub1 ces1 22207 eval1ce1 22208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-evls 21988 df-evl 21989 df-evls1 22209 df-evl1 22210 |
| This theorem is referenced by: evls1scasrng 22233 evls1varsrng 22234 evl1gsumadd 22252 evl1varpw 22255 ressply1evl 22264 evl1maprhm 22273 evl1fpws 33540 cos9thpiminply 33785 |
| Copyright terms: Public domain | W3C validator |