| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version | ||
| Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| reldmmpo | ⊢ Rel dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmoprab 7456 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 3 | df-mpo 7354 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 4 | 2, 3 | eqtri 2752 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | 4 | dmeqi 5847 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 6 | 5 | releqi 5721 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
| 7 | 1, 6 | mpbir 231 | 1 ⊢ Rel dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5619 Rel wrel 5624 {coprab 7350 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: reldmmap 8762 reldmrelexp 14928 reldmsets 17076 reldmress 17143 reldmprds 17352 gsum0 18558 reldmghm 19093 oppglsm 19521 reldmdprd 19878 reldmlmhm 20929 zrhval 21414 reldmdsmm 21640 frlmrcl 21664 reldmpsr 21821 reldmmpl 21895 reldmopsr 21950 reldmevls 21989 reldmmhp 22022 vr1val 22074 reldmevls1 22202 evl1fval 22213 matbas0pc 22294 mdetfval 22471 madufval 22522 qtopres 23583 fgabs 23764 reldmtng 24524 reldmnghm 24598 reldmnmhm 24599 dvbsss 25801 reldmmdeg 25960 nbgrprc0 29279 wwlksn 29782 of0r 32621 reldmrloc 33197 erlval 33198 reldmresv 33266 bj-restsnid 37065 mzpmfp 42724 brovmptimex 44004 clnbgrprc0 47808 grimdmrel 47868 grlimdmrel 47968 1aryenef 48634 2aryenef 48645 resccat 49063 reldmfunc 49064 reldmoppf 49114 reldmup 49164 reldmup2 49171 reldmxpcALT 49236 fucofvalne 49314 reldmprcof 49364 reldmprcof2 49371 prcof1 49377 reldmlan 49600 reldmran 49601 reldmlan2 49606 reldmran2 49607 reldmlmd 49636 reldmcmd 49637 |
| Copyright terms: Public domain | W3C validator |