![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version |
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
reldmmpo | ⊢ Rel dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldmoprab 7556 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
3 | df-mpo 7453 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
4 | 2, 3 | eqtri 2768 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | 4 | dmeqi 5929 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
6 | 5 | releqi 5801 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
7 | 1, 6 | mpbir 231 | 1 ⊢ Rel dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 dom cdm 5700 Rel wrel 5705 {coprab 7449 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: reldmmap 8893 reldmrelexp 15070 reldmsets 17212 reldmress 17289 reldmprds 17508 gsum0 18722 reldmghm 19254 oppglsm 19684 reldmdprd 20041 reldmlmhm 21047 zrhval 21541 reldmdsmm 21776 frlmrcl 21800 reldmpsr 21957 reldmmpl 22031 reldmopsr 22086 reldmevls 22131 reldmmhp 22164 vr1val 22214 reldmevls1 22342 evl1fval 22353 matbas0pc 22434 mdetfval 22613 madufval 22664 qtopres 23727 fgabs 23908 reldmtng 24672 reldmnghm 24754 reldmnmhm 24755 dvbsss 25957 reldmmdeg 26116 nbgrprc0 29369 wwlksn 29870 of0r 32696 reldmrloc 33229 erlval 33230 reldmresv 33317 bj-restsnid 37053 mzpmfp 42703 brovmptimex 43989 clnbgrprc0 47694 grimdmrel 47750 grlimdmrel 47804 1aryenef 48379 2aryenef 48390 |
Copyright terms: Public domain | W3C validator |