| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version | ||
| Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| reldmmpo | ⊢ Rel dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmoprab 7476 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 3 | df-mpo 7374 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 4 | 2, 3 | eqtri 2752 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | 4 | dmeqi 5858 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 6 | 5 | releqi 5732 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
| 7 | 1, 6 | mpbir 231 | 1 ⊢ Rel dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5631 Rel wrel 5636 {coprab 7370 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: reldmmap 8785 reldmrelexp 14963 reldmsets 17111 reldmress 17178 reldmprds 17387 gsum0 18587 reldmghm 19122 oppglsm 19548 reldmdprd 19905 reldmlmhm 20908 zrhval 21393 reldmdsmm 21618 frlmrcl 21642 reldmpsr 21799 reldmmpl 21873 reldmopsr 21928 reldmevls 21967 reldmmhp 22000 vr1val 22052 reldmevls1 22180 evl1fval 22191 matbas0pc 22272 mdetfval 22449 madufval 22500 qtopres 23561 fgabs 23742 reldmtng 24502 reldmnghm 24576 reldmnmhm 24577 dvbsss 25779 reldmmdeg 25938 nbgrprc0 29237 wwlksn 29740 of0r 32575 reldmrloc 33181 erlval 33182 reldmresv 33273 bj-restsnid 37048 mzpmfp 42708 brovmptimex 43989 clnbgrprc0 47794 grimdmrel 47853 grlimdmrel 47952 1aryenef 48607 2aryenef 48618 resccat 49036 reldmfunc 49037 reldmoppf 49087 reldmup 49137 reldmup2 49144 reldmxpcALT 49209 fucofvalne 49287 reldmprcof 49337 reldmprcof2 49344 prcof1 49350 reldmlan 49573 reldmran 49574 reldmlan2 49579 reldmran2 49580 reldmlmd 49609 reldmcmd 49610 |
| Copyright terms: Public domain | W3C validator |