MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpo Structured version   Visualization version   GIF version

Theorem reldmmpo 7440
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
reldmmpo Rel dom 𝐹
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem reldmmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 7412 . 2 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
3 df-mpo 7312 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
42, 3eqtri 2764 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
54dmeqi 5826 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
65releqi 5699 . 2 (Rel dom 𝐹 ↔ Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
71, 6mpbir 230 1 Rel dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wcel 2104  dom cdm 5600  Rel wrel 5605  {coprab 7308  cmpo 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-dm 5610  df-oprab 7311  df-mpo 7312
This theorem is referenced by:  reldmmap  8655  reldmrelexp  14781  reldmsets  16915  reldmress  16992  reldmprds  17208  gsum0  18417  reldmghm  18882  oppglsm  19296  reldmdprd  19649  reldmlmhm  20336  zrhval  20758  reldmdsmm  20989  frlmrcl  21013  reldmpsr  21166  reldmmpl  21245  reldmopsr  21295  reldmevls  21343  vr1val  21412  reldmevls1  21532  evl1fval  21543  matbas0pc  21605  mdetfval  21784  madufval  21835  qtopres  22898  fgabs  23079  reldmtng  23843  reldmnghm  23925  reldmnmhm  23926  dvbsss  25115  reldmmdeg  25268  nbgrprc0  27750  wwlksn  28251  reldmresv  31574  bj-restsnid  35306  mzpmfp  40764  brovmptimex  41850  1aryenef  46235  2aryenef  46246
  Copyright terms: Public domain W3C validator