| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version | ||
| Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| reldmmpo | ⊢ Rel dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmoprab 7453 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 3 | df-mpo 7351 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 4 | 2, 3 | eqtri 2754 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | 4 | dmeqi 5843 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 6 | 5 | releqi 5717 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
| 7 | 1, 6 | mpbir 231 | 1 ⊢ Rel dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 dom cdm 5614 Rel wrel 5619 {coprab 7347 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: reldmmap 8759 reldmrelexp 14928 reldmsets 17076 reldmress 17143 reldmprds 17352 gsum0 18592 reldmghm 19126 oppglsm 19554 reldmdprd 19911 reldmlmhm 20959 zrhval 21444 reldmdsmm 21670 frlmrcl 21694 reldmpsr 21851 reldmmpl 21925 reldmopsr 21980 reldmevls 22019 reldmmhp 22052 vr1val 22104 reldmevls1 22232 evl1fval 22243 matbas0pc 22324 mdetfval 22501 madufval 22552 qtopres 23613 fgabs 23794 reldmtng 24553 reldmnghm 24627 reldmnmhm 24628 dvbsss 25830 reldmmdeg 25989 nbgrprc0 29312 wwlksn 29815 of0r 32660 reldmrloc 33224 erlval 33225 reldmresv 33293 bj-restsnid 37131 mzpmfp 42850 brovmptimex 44130 clnbgrprc0 47930 grimdmrel 47990 grlimdmrel 48090 1aryenef 48756 2aryenef 48767 resccat 49185 reldmfunc 49186 reldmoppf 49236 reldmup 49286 reldmup2 49293 reldmxpcALT 49358 fucofvalne 49436 reldmprcof 49486 reldmprcof2 49493 prcof1 49499 reldmlan 49722 reldmran 49723 reldmlan2 49728 reldmran2 49729 reldmlmd 49758 reldmcmd 49759 |
| Copyright terms: Public domain | W3C validator |