| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version | ||
| Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| reldmmpo | ⊢ Rel dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmoprab 7496 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 3 | df-mpo 7392 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 4 | 2, 3 | eqtri 2752 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 5 | 4 | dmeqi 5868 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 6 | 5 | releqi 5740 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
| 7 | 1, 6 | mpbir 231 | 1 ⊢ Rel dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 dom cdm 5638 Rel wrel 5643 {coprab 7388 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: reldmmap 8808 reldmrelexp 14987 reldmsets 17135 reldmress 17202 reldmprds 17411 gsum0 18611 reldmghm 19146 oppglsm 19572 reldmdprd 19929 reldmlmhm 20932 zrhval 21417 reldmdsmm 21642 frlmrcl 21666 reldmpsr 21823 reldmmpl 21897 reldmopsr 21952 reldmevls 21991 reldmmhp 22024 vr1val 22076 reldmevls1 22204 evl1fval 22215 matbas0pc 22296 mdetfval 22473 madufval 22524 qtopres 23585 fgabs 23766 reldmtng 24526 reldmnghm 24600 reldmnmhm 24601 dvbsss 25803 reldmmdeg 25962 nbgrprc0 29261 wwlksn 29767 of0r 32602 reldmrloc 33208 erlval 33209 reldmresv 33300 bj-restsnid 37075 mzpmfp 42735 brovmptimex 44016 clnbgrprc0 47821 grimdmrel 47880 grlimdmrel 47979 1aryenef 48634 2aryenef 48645 resccat 49063 reldmfunc 49064 reldmoppf 49114 reldmup 49164 reldmup2 49171 reldmxpcALT 49236 fucofvalne 49314 reldmprcof 49364 reldmprcof2 49371 prcof1 49377 reldmlan 49600 reldmran 49601 reldmlan2 49606 reldmran2 49607 reldmlmd 49636 reldmcmd 49637 |
| Copyright terms: Public domain | W3C validator |