MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpo Structured version   Visualization version   GIF version

Theorem reldmmpo 7541
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
reldmmpo Rel dom 𝐹
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem reldmmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 7514 . 2 Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 rngop.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
3 df-mpo 7410 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
42, 3eqtri 2758 . . . 4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
54dmeqi 5884 . . 3 dom 𝐹 = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
65releqi 5756 . 2 (Rel dom 𝐹 ↔ Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
71, 6mpbir 231 1 Rel dom 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  dom cdm 5654  Rel wrel 5659  {coprab 7406  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-dm 5664  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  reldmmap  8849  reldmrelexp  15040  reldmsets  17184  reldmress  17253  reldmprds  17462  gsum0  18662  reldmghm  19197  oppglsm  19623  reldmdprd  19980  reldmlmhm  20983  zrhval  21468  reldmdsmm  21693  frlmrcl  21717  reldmpsr  21874  reldmmpl  21948  reldmopsr  22003  reldmevls  22042  reldmmhp  22075  vr1val  22127  reldmevls1  22255  evl1fval  22266  matbas0pc  22347  mdetfval  22524  madufval  22575  qtopres  23636  fgabs  23817  reldmtng  24577  reldmnghm  24651  reldmnmhm  24652  dvbsss  25855  reldmmdeg  26014  nbgrprc0  29313  wwlksn  29819  of0r  32656  reldmrloc  33252  erlval  33253  reldmresv  33344  bj-restsnid  37105  mzpmfp  42770  brovmptimex  44051  clnbgrprc0  47834  grimdmrel  47893  grlimdmrel  47992  1aryenef  48625  2aryenef  48636  resccat  49041  reldmfunc  49042  reldmoppf  49073  reldmup  49110  reldmup2  49116  reldmxpcALT  49164  fucofvalne  49236  reldmprcof  49286  reldmprcof2  49292  prcof1  49298  reldmlan  49488  reldmran  49489  reldmlan2  49492  reldmran2  49493  reldmlmd  49521  reldmcmd  49522
  Copyright terms: Public domain W3C validator