Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reldmmpo | Structured version Visualization version GIF version |
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
reldmmpo | ⊢ Rel dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldmoprab 7412 | . 2 ⊢ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | rngop.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
3 | df-mpo 7312 | . . . . 5 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
4 | 2, 3 | eqtri 2764 | . . . 4 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
5 | 4 | dmeqi 5826 | . . 3 ⊢ dom 𝐹 = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
6 | 5 | releqi 5699 | . 2 ⊢ (Rel dom 𝐹 ↔ Rel dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
7 | 1, 6 | mpbir 230 | 1 ⊢ Rel dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 dom cdm 5600 Rel wrel 5605 {coprab 7308 ∈ cmpo 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-dm 5610 df-oprab 7311 df-mpo 7312 |
This theorem is referenced by: reldmmap 8655 reldmrelexp 14781 reldmsets 16915 reldmress 16992 reldmprds 17208 gsum0 18417 reldmghm 18882 oppglsm 19296 reldmdprd 19649 reldmlmhm 20336 zrhval 20758 reldmdsmm 20989 frlmrcl 21013 reldmpsr 21166 reldmmpl 21245 reldmopsr 21295 reldmevls 21343 vr1val 21412 reldmevls1 21532 evl1fval 21543 matbas0pc 21605 mdetfval 21784 madufval 21835 qtopres 22898 fgabs 23079 reldmtng 23843 reldmnghm 23925 reldmnmhm 23926 dvbsss 25115 reldmmdeg 25268 nbgrprc0 27750 wwlksn 28251 reldmresv 31574 bj-restsnid 35306 mzpmfp 40764 brovmptimex 41850 1aryenef 46235 2aryenef 46246 |
Copyright terms: Public domain | W3C validator |