MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmnghm Structured version   Visualization version   GIF version

Theorem reldmnghm 24733
Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
reldmnghm Rel dom NGHom

Proof of Theorem reldmnghm
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nghm 24730 . 2 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
21reldmmpo 7567 1 Rel dom NGHom
Colors of variables: wff setvar class
Syntax hints:  ccnv 5684  dom cdm 5685  cima 5688  Rel wrel 5690  (class class class)co 7431  cr 11154  NrmGrpcngp 24590   normOp cnmo 24726   NGHom cnghm 24727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-rel 5692  df-dm 5695  df-oprab 7435  df-mpo 7436  df-nghm 24730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator