MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmnghm Structured version   Visualization version   GIF version

Theorem reldmnghm 22924
Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
reldmnghm Rel dom NGHom

Proof of Theorem reldmnghm
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nghm 22921 . 2 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
21reldmmpt2 7048 1 Rel dom NGHom
Colors of variables: wff setvar class
Syntax hints:  ccnv 5354  dom cdm 5355  cima 5358  Rel wrel 5360  (class class class)co 6922  cr 10271  NrmGrpcngp 22790   normOp cnmo 22917   NGHom cnghm 22918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362  df-dm 5365  df-oprab 6926  df-mpt2 6927  df-nghm 22921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator