| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmnghm | Structured version Visualization version GIF version | ||
| Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| reldmnghm | ⊢ Rel dom NGHom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nghm 24646 | . 2 ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | |
| 2 | 1 | reldmmpo 7539 | 1 ⊢ Rel dom NGHom |
| Colors of variables: wff setvar class |
| Syntax hints: ◡ccnv 5653 dom cdm 5654 “ cima 5657 Rel wrel 5659 (class class class)co 7403 ℝcr 11126 NrmGrpcngp 24514 normOp cnmo 24642 NGHom cnghm 24643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7407 df-mpo 7408 df-nghm 24646 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |