MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmnghm Structured version   Visualization version   GIF version

Theorem reldmnghm 23956
Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.)
Assertion
Ref Expression
reldmnghm Rel dom NGHom

Proof of Theorem reldmnghm
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nghm 23953 . 2 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
21reldmmpo 7449 1 Rel dom NGHom
Colors of variables: wff setvar class
Syntax hints:  ccnv 5606  dom cdm 5607  cima 5610  Rel wrel 5612  (class class class)co 7316  cr 10949  NrmGrpcngp 23813   normOp cnmo 23949   NGHom cnghm 23950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-xp 5613  df-rel 5614  df-dm 5617  df-oprab 7320  df-mpo 7321  df-nghm 23953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator