![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmnghm | Structured version Visualization version GIF version |
Description: Lemma for normed group homomorphisms. (Contributed by Mario Carneiro, 18-Oct-2015.) |
Ref | Expression |
---|---|
reldmnghm | ⊢ Rel dom NGHom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nghm 22921 | . 2 ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) | |
2 | 1 | reldmmpt2 7048 | 1 ⊢ Rel dom NGHom |
Colors of variables: wff setvar class |
Syntax hints: ◡ccnv 5354 dom cdm 5355 “ cima 5358 Rel wrel 5360 (class class class)co 6922 ℝcr 10271 NrmGrpcngp 22790 normOp cnmo 22917 NGHom cnghm 22918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-dm 5365 df-oprab 6926 df-mpt2 6927 df-nghm 22921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |