| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpcALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of reldmxpc 49208. (Contributed by Zhi Wang, 15-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| reldmxpcALT | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xpc 18109 | . 2 ⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) | |
| 2 | 1 | reldmmpo 7503 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ⦋csb 3859 {ctp 4589 〈cop 4591 × cxp 5629 dom cdm 5631 Rel wrel 5636 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 ndxcnx 17139 Basecbs 17155 Hom chom 17207 compcco 17208 ×c cxpc 18105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-oprab 7373 df-mpo 7374 df-xpc 18109 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |