![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elxpcbasex1 | Structured version Visualization version GIF version |
Description: A non-empty base set of the product category indicates the existence of the first factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025.) (Proof shortened by SN, 15-Oct-2025.) |
Ref | Expression |
---|---|
elxpcbasex1.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
elxpcbasex1.b | ⊢ 𝐵 = (Base‘𝑇) |
elxpcbasex1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elxpcbasex1 | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxpcbasex1.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | elxpcbasex1.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
3 | elxpcbasex1.b | . . 3 ⊢ 𝐵 = (Base‘𝑇) | |
4 | reldmxpc 48925 | . . 3 ⊢ Rel dom ×c | |
5 | 2, 3, 4 | strov2rcl 17251 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝐶 ∈ V) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3479 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 ×c cxpc 18209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-1cn 11209 ax-addcl 11211 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-nn 12263 df-slot 17215 df-ndx 17227 df-base 17244 df-xpc 18213 |
This theorem is referenced by: swapf1a 48948 swapf2vala 48949 swapf2f1oaALT 48957 |
Copyright terms: Public domain | W3C validator |