| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7392, elbasov 17146, strov2rcl 17147, and so on. See reldmxpcALT 49252 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmxpc | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5641 | . 2 ⊢ Rel (V × V) | |
| 2 | fnxpc 18101 | . . . 4 ⊢ ×c Fn (V × V) | |
| 3 | 2 | fndmi 6590 | . . 3 ⊢ dom ×c = (V × V) |
| 4 | 3 | releqi 5725 | . 2 ⊢ (Rel dom ×c ↔ Rel (V × V)) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 × cxp 5621 dom cdm 5623 Rel wrel 5628 ×c cxpc 18093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-xpc 18097 |
| This theorem is referenced by: elxpcbasex1 49253 elxpcbasex2 49255 |
| Copyright terms: Public domain | W3C validator |