| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7438, elbasov 17220, strov2rcl 17221, and so on. See reldmxpcALT 48970 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmxpc | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5669 | . 2 ⊢ Rel (V × V) | |
| 2 | fnxpc 18173 | . . . 4 ⊢ ×c Fn (V × V) | |
| 3 | 2 | fndmi 6638 | . . 3 ⊢ dom ×c = (V × V) |
| 4 | 3 | releqi 5753 | . 2 ⊢ (Rel dom ×c ↔ Rel (V × V)) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3457 × cxp 5649 dom cdm 5651 Rel wrel 5656 ×c cxpc 18165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-fv 6535 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-xpc 18169 |
| This theorem is referenced by: elxpcbasex1 48971 elxpcbasex2 48973 |
| Copyright terms: Public domain | W3C validator |