| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7394, elbasov 17134, strov2rcl 17135, and so on. See reldmxpcALT 49408 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmxpc | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5639 | . 2 ⊢ Rel (V × V) | |
| 2 | fnxpc 18090 | . . . 4 ⊢ ×c Fn (V × V) | |
| 3 | 2 | fndmi 6593 | . . 3 ⊢ dom ×c = (V × V) |
| 4 | 3 | releqi 5724 | . 2 ⊢ (Rel dom ×c ↔ Rel (V × V)) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 × cxp 5619 dom cdm 5621 Rel wrel 5626 ×c cxpc 18082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-xpc 18086 |
| This theorem is referenced by: elxpcbasex1 49409 elxpcbasex2 49411 |
| Copyright terms: Public domain | W3C validator |