| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7468, elbasov 17250, strov2rcl 17251, and so on. See reldmxpcALT 48926 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmxpc | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5701 | . 2 ⊢ Rel (V × V) | |
| 2 | fnxpc 18217 | . . . 4 ⊢ ×c Fn (V × V) | |
| 3 | 2 | fndmi 6670 | . . 3 ⊢ dom ×c = (V × V) |
| 4 | 3 | releqi 5785 | . 2 ⊢ (Rel dom ×c ↔ Rel (V × V)) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3479 × cxp 5681 dom cdm 5683 Rel wrel 5688 ×c cxpc 18209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-fv 6567 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-xpc 18213 |
| This theorem is referenced by: elxpcbasex1 48927 elxpcbasex2 48929 |
| Copyright terms: Public domain | W3C validator |