Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmxpc Structured version   Visualization version   GIF version

Theorem reldmxpc 49208
Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7408, elbasov 17162, strov2rcl 17163, and so on. See reldmxpcALT 49209 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.)
Assertion
Ref Expression
reldmxpc Rel dom ×c

Proof of Theorem reldmxpc
StepHypRef Expression
1 relxp 5649 . 2 Rel (V × V)
2 fnxpc 18113 . . . 4 ×c Fn (V × V)
32fndmi 6604 . . 3 dom ×c = (V × V)
43releqi 5732 . 2 (Rel dom ×c ↔ Rel (V × V))
51, 4mpbir 231 1 Rel dom ×c
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3444   × cxp 5629  dom cdm 5631  Rel wrel 5636   ×c cxpc 18105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-xpc 18109
This theorem is referenced by:  elxpcbasex1  49210  elxpcbasex2  49212
  Copyright terms: Public domain W3C validator