Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmxpc Structured version   Visualization version   GIF version

Theorem reldmxpc 49251
Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7392, elbasov 17146, strov2rcl 17147, and so on. See reldmxpcALT 49252 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.)
Assertion
Ref Expression
reldmxpc Rel dom ×c

Proof of Theorem reldmxpc
StepHypRef Expression
1 relxp 5641 . 2 Rel (V × V)
2 fnxpc 18101 . . . 4 ×c Fn (V × V)
32fndmi 6590 . . 3 dom ×c = (V × V)
43releqi 5725 . 2 (Rel dom ×c ↔ Rel (V × V))
51, 4mpbir 231 1 Rel dom ×c
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438   × cxp 5621  dom cdm 5623  Rel wrel 5628   ×c cxpc 18093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-xpc 18097
This theorem is referenced by:  elxpcbasex1  49253  elxpcbasex2  49255
  Copyright terms: Public domain W3C validator