| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a proper operator, so it can be used with ovprc1 7380, elbasov 17122, strov2rcl 17123, and so on. See reldmxpcALT 49279 for an alternate proof with less "essential steps" but more "bytes". (Proposed by SN, 15-Oct-2025.) (Contributed by Zhi Wang, 15-Oct-2025.) |
| Ref | Expression |
|---|---|
| reldmxpc | ⊢ Rel dom ×c |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5629 | . 2 ⊢ Rel (V × V) | |
| 2 | fnxpc 18077 | . . . 4 ⊢ ×c Fn (V × V) | |
| 3 | 2 | fndmi 6580 | . . 3 ⊢ dom ×c = (V × V) |
| 4 | 3 | releqi 5713 | . 2 ⊢ (Rel dom ×c ↔ Rel (V × V)) |
| 5 | 1, 4 | mpbir 231 | 1 ⊢ Rel dom ×c |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 × cxp 5609 dom cdm 5611 Rel wrel 5616 ×c cxpc 18069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-xpc 18073 |
| This theorem is referenced by: elxpcbasex1 49280 elxpcbasex2 49282 |
| Copyright terms: Public domain | W3C validator |