MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmb Structured version   Visualization version   GIF version

Theorem releldmb 5855
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 5807 . . 3 (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
21ibi 266 . 2 (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥)
3 releldm 5853 . . . 4 ((Rel 𝑅𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅)
43ex 413 . . 3 (Rel 𝑅 → (𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
54exlimdv 1936 . 2 (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥𝐴 ∈ dom 𝑅))
62, 5impbid2 225 1 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  wcel 2106   class class class wbr 5074  dom cdm 5589  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dm 5599
This theorem is referenced by:  eqvrelref  36723
  Copyright terms: Public domain W3C validator