MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrn Structured version   Visualization version   GIF version

Theorem relelrn 5970
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
relelrn ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)

Proof of Theorem relelrn
StepHypRef Expression
1 brrelex1 5753 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 5754 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 484 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 brelrng 5966 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
51, 2, 3, 4syl3anc 1371 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166  ran crn 5701  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  relelrnb  5972  relelrni  5974  dirge  18673  metideq  33839  ntrneinex  44039
  Copyright terms: Public domain W3C validator