| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5735 and brv 5407. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5664 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5665 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5844 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 dom cdm 5611 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 |
| This theorem is referenced by: releldmb 5881 releldmi 5883 sofld 6129 funeu 6501 fnbr 6584 funbrfv2b 6874 funfvbrb 6979 ercl 8628 inviso1 17668 setciso 17993 rngciso 20548 ringciso 20582 lmle 25223 dvidlem 25838 dvmulbr 25863 dvmulbrOLD 25864 dvcobr 25871 dvcobrOLD 25872 ulmcau 26326 ulmdvlem3 26333 metideq 33898 heibor1lem 37849 rrncmslem 37872 eqvrelcl 38649 ntrclsiex 44086 ntrneiiex 44109 binomcxplemnn0 44382 binomcxplemnotnn0 44389 sumnnodd 45670 climlimsup 45798 climlimsupcex 45807 climliminflimsupd 45839 liminflimsupclim 45845 dmclimxlim 45889 xlimclimdm 45892 xlimresdm 45897 ioodvbdlimc1lem2 45970 ioodvbdlimc2lem 45972 funbrafv 47189 funbrafv2b 47190 rngcisoALTV 48308 ringcisoALTV 48342 isinito3 49532 |
| Copyright terms: Public domain | W3C validator |