| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5754 and brv 5427. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5684 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5685 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5863 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 |
| This theorem is referenced by: releldmb 5899 releldmi 5901 sofld 6148 funeu 6525 fnbr 6608 funbrfv2b 6900 funfvbrb 7005 ercl 8659 inviso1 17704 setciso 18029 rngciso 20523 ringciso 20557 lmle 25177 dvidlem 25792 dvmulbr 25817 dvmulbrOLD 25818 dvcobr 25825 dvcobrOLD 25826 ulmcau 26280 ulmdvlem3 26287 metideq 33856 heibor1lem 37776 rrncmslem 37799 eqvrelcl 38576 ntrclsiex 44015 ntrneiiex 44038 binomcxplemnn0 44311 binomcxplemnotnn0 44318 sumnnodd 45601 climlimsup 45731 climlimsupcex 45740 climliminflimsupd 45772 liminflimsupclim 45778 dmclimxlim 45822 xlimclimdm 45825 xlimresdm 45830 ioodvbdlimc1lem2 45903 ioodvbdlimc2lem 45905 funbrafv 47132 funbrafv2b 47133 rngcisoALTV 48238 ringcisoALTV 48272 isinito3 49462 |
| Copyright terms: Public domain | W3C validator |