| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5763 and brv 5432. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5691 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5692 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5873 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 dom cdm 5638 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 |
| This theorem is referenced by: releldmb 5910 releldmi 5912 sofld 6160 funeu 6541 fnbr 6626 funbrfv2b 6918 funfvbrb 7023 ercl 8682 inviso1 17728 setciso 18053 rngciso 20547 ringciso 20581 lmle 25201 dvidlem 25816 dvmulbr 25841 dvmulbrOLD 25842 dvcobr 25849 dvcobrOLD 25850 ulmcau 26304 ulmdvlem3 26311 metideq 33883 heibor1lem 37803 rrncmslem 37826 eqvrelcl 38603 ntrclsiex 44042 ntrneiiex 44065 binomcxplemnn0 44338 binomcxplemnotnn0 44345 sumnnodd 45628 climlimsup 45758 climlimsupcex 45767 climliminflimsupd 45799 liminflimsupclim 45805 dmclimxlim 45849 xlimclimdm 45852 xlimresdm 45857 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 funbrafv 47159 funbrafv2b 47160 rngcisoALTV 48265 ringcisoALTV 48299 isinito3 49489 |
| Copyright terms: Public domain | W3C validator |