![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5812 and brv 5482. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex1 5741 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
2 | brrelex2 5742 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | breldmg 5922 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 dom cdm 5688 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-dm 5698 |
This theorem is referenced by: releldmb 5959 releldmi 5961 sofld 6208 funeu 6592 fnbr 6676 funbrfv2b 6965 funfvbrb 7070 ercl 8754 inviso1 17813 setciso 18144 rngciso 20654 ringciso 20688 lmle 25348 dvidlem 25964 dvmulbr 25989 dvmulbrOLD 25990 dvcobr 25997 dvcobrOLD 25998 ulmcau 26452 ulmdvlem3 26459 metideq 33853 heibor1lem 37795 rrncmslem 37818 eqvrelcl 38593 ntrclsiex 44042 ntrneiiex 44065 binomcxplemnn0 44344 binomcxplemnotnn0 44351 sumnnodd 45585 climlimsup 45715 climlimsupcex 45724 climliminflimsupd 45756 liminflimsupclim 45762 dmclimxlim 45806 xlimclimdm 45809 xlimresdm 45814 ioodvbdlimc1lem2 45887 ioodvbdlimc2lem 45889 funbrafv 47107 funbrafv2b 47108 rngcisoALTV 48120 ringcisoALTV 48154 |
Copyright terms: Public domain | W3C validator |