| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5743 and brv 5415. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5672 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5673 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5852 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 dom cdm 5619 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 |
| This theorem is referenced by: releldmb 5888 releldmi 5890 sofld 6136 funeu 6507 fnbr 6590 funbrfv2b 6880 funfvbrb 6985 ercl 8636 inviso1 17673 setciso 17998 rngciso 20523 ringciso 20557 lmle 25199 dvidlem 25814 dvmulbr 25839 dvmulbrOLD 25840 dvcobr 25847 dvcobrOLD 25848 ulmcau 26302 ulmdvlem3 26309 metideq 33860 heibor1lem 37789 rrncmslem 37812 eqvrelcl 38589 ntrclsiex 44026 ntrneiiex 44049 binomcxplemnn0 44322 binomcxplemnotnn0 44329 sumnnodd 45611 climlimsup 45741 climlimsupcex 45750 climliminflimsupd 45782 liminflimsupclim 45788 dmclimxlim 45832 xlimclimdm 45835 xlimresdm 45840 ioodvbdlimc1lem2 45913 ioodvbdlimc2lem 45915 funbrafv 47142 funbrafv2b 47143 rngcisoALTV 48261 ringcisoALTV 48295 isinito3 49485 |
| Copyright terms: Public domain | W3C validator |