Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5699 and brv 5381. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex1 5631 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
2 | brrelex2 5632 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | breldmg 5807 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 dom cdm 5580 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 |
This theorem is referenced by: releldmb 5844 releldmi 5846 sofld 6079 funeu 6443 fnbr 6525 funbrfv2b 6809 funfvbrb 6910 ercl 8467 inviso1 17395 setciso 17722 lmle 24370 dvidlem 24984 dvmulbr 25008 dvcobr 25015 ulmcau 25459 ulmdvlem3 25466 metideq 31745 heibor1lem 35894 rrncmslem 35917 eqvrelcl 36652 ntrclsiex 41552 ntrneiiex 41575 binomcxplemnn0 41856 binomcxplemnotnn0 41863 sumnnodd 43061 climlimsup 43191 climlimsupcex 43200 climliminflimsupd 43232 liminflimsupclim 43238 dmclimxlim 43282 xlimclimdm 43285 xlimresdm 43290 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 funbrafv 44537 funbrafv2b 44538 rngciso 45428 rngcisoALTV 45440 ringciso 45479 ringcisoALTV 45503 |
Copyright terms: Public domain | W3C validator |