| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5766 and brv 5435. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5694 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5695 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5876 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 dom cdm 5641 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 |
| This theorem is referenced by: releldmb 5913 releldmi 5915 sofld 6163 funeu 6544 fnbr 6629 funbrfv2b 6921 funfvbrb 7026 ercl 8685 inviso1 17735 setciso 18060 rngciso 20554 ringciso 20588 lmle 25208 dvidlem 25823 dvmulbr 25848 dvmulbrOLD 25849 dvcobr 25856 dvcobrOLD 25857 ulmcau 26311 ulmdvlem3 26318 metideq 33890 heibor1lem 37810 rrncmslem 37833 eqvrelcl 38610 ntrclsiex 44049 ntrneiiex 44072 binomcxplemnn0 44345 binomcxplemnotnn0 44352 sumnnodd 45635 climlimsup 45765 climlimsupcex 45774 climliminflimsupd 45806 liminflimsupclim 45812 dmclimxlim 45856 xlimclimdm 45859 xlimresdm 45864 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 funbrafv 47163 funbrafv2b 47164 rngcisoALTV 48269 ringcisoALTV 48303 isinito3 49493 |
| Copyright terms: Public domain | W3C validator |