Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5710 and brv 5387. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex1 5640 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
2 | brrelex2 5641 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | simpr 485 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | breldmg 5818 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 |
This theorem is referenced by: releldmb 5855 releldmi 5857 sofld 6090 funeu 6459 fnbr 6541 funbrfv2b 6827 funfvbrb 6928 ercl 8509 inviso1 17478 setciso 17806 lmle 24465 dvidlem 25079 dvmulbr 25103 dvcobr 25110 ulmcau 25554 ulmdvlem3 25561 metideq 31843 heibor1lem 35967 rrncmslem 35990 eqvrelcl 36725 ntrclsiex 41663 ntrneiiex 41686 binomcxplemnn0 41967 binomcxplemnotnn0 41974 sumnnodd 43171 climlimsup 43301 climlimsupcex 43310 climliminflimsupd 43342 liminflimsupclim 43348 dmclimxlim 43392 xlimclimdm 43395 xlimresdm 43400 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 funbrafv 44650 funbrafv2b 44651 rngciso 45540 rngcisoALTV 45552 ringciso 45591 ringcisoALTV 45615 |
Copyright terms: Public domain | W3C validator |