![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5824 and brv 5492. (Contributed by NM, 2-Jul-2008.) |
Ref | Expression |
---|---|
releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex1 5753 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
2 | brrelex2 5754 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
4 | breldmg 5934 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 dom cdm 5700 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 |
This theorem is referenced by: releldmb 5971 releldmi 5973 sofld 6218 funeu 6603 fnbr 6687 funbrfv2b 6979 funfvbrb 7084 ercl 8774 inviso1 17827 setciso 18158 rngciso 20660 ringciso 20694 lmle 25354 dvidlem 25970 dvmulbr 25995 dvmulbrOLD 25996 dvcobr 26003 dvcobrOLD 26004 ulmcau 26456 ulmdvlem3 26463 metideq 33839 heibor1lem 37769 rrncmslem 37792 eqvrelcl 38568 ntrclsiex 44015 ntrneiiex 44038 binomcxplemnn0 44318 binomcxplemnotnn0 44325 sumnnodd 45551 climlimsup 45681 climlimsupcex 45690 climliminflimsupd 45722 liminflimsupclim 45728 dmclimxlim 45772 xlimclimdm 45775 xlimresdm 45780 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 funbrafv 47073 funbrafv2b 47074 rngcisoALTV 48000 ringcisoALTV 48034 |
Copyright terms: Public domain | W3C validator |