| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldm | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5779 and brv 5447. (Contributed by NM, 2-Jul-2008.) |
| Ref | Expression |
|---|---|
| releldm | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 5707 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 2 | brrelex2 5708 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ V) | |
| 3 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴𝑅𝐵) | |
| 4 | breldmg 5889 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 dom cdm 5654 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 |
| This theorem is referenced by: releldmb 5926 releldmi 5928 sofld 6176 funeu 6561 fnbr 6646 funbrfv2b 6936 funfvbrb 7041 ercl 8730 inviso1 17779 setciso 18104 rngciso 20598 ringciso 20632 lmle 25253 dvidlem 25868 dvmulbr 25893 dvmulbrOLD 25894 dvcobr 25901 dvcobrOLD 25902 ulmcau 26356 ulmdvlem3 26363 metideq 33924 heibor1lem 37833 rrncmslem 37856 eqvrelcl 38630 ntrclsiex 44077 ntrneiiex 44100 binomcxplemnn0 44373 binomcxplemnotnn0 44380 sumnnodd 45659 climlimsup 45789 climlimsupcex 45798 climliminflimsupd 45830 liminflimsupclim 45836 dmclimxlim 45880 xlimclimdm 45883 xlimresdm 45888 ioodvbdlimc1lem2 45961 ioodvbdlimc2lem 45963 funbrafv 47187 funbrafv2b 47188 rngcisoALTV 48252 ringcisoALTV 48286 isinito3 49385 |
| Copyright terms: Public domain | W3C validator |