MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldm Structured version   Visualization version   GIF version

Theorem releldm 5943
Description: The first argument of a binary relation belongs to its domain. Note that 𝐴𝑅𝐵 does not imply Rel 𝑅: see for example nrelv 5800 and brv 5472. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
releldm ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem releldm
StepHypRef Expression
1 brrelex1 5729 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
2 brrelex2 5730 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
3 simpr 484 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴𝑅𝐵)
4 breldmg 5909 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
51, 2, 3, 4syl3anc 1370 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  Vcvv 3473   class class class wbr 5148  dom cdm 5676  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-dm 5686
This theorem is referenced by:  releldmb  5945  releldmi  5947  sofld  6186  funeu  6573  fnbr  6657  funbrfv2b  6949  funfvbrb  7052  ercl  8720  inviso1  17720  setciso  18051  rngciso  20530  ringciso  20564  lmle  25148  dvidlem  25763  dvmulbr  25788  dvmulbrOLD  25789  dvcobr  25796  dvcobrOLD  25797  ulmcau  26245  ulmdvlem3  26252  metideq  33336  heibor1lem  37140  rrncmslem  37163  eqvrelcl  37945  ntrclsiex  43266  ntrneiiex  43289  binomcxplemnn0  43570  binomcxplemnotnn0  43577  sumnnodd  44804  climlimsup  44934  climlimsupcex  44943  climliminflimsupd  44975  liminflimsupclim  44981  dmclimxlim  45025  xlimclimdm  45028  xlimresdm  45033  ioodvbdlimc1lem2  45106  ioodvbdlimc2lem  45108  funbrafv  46324  funbrafv2b  46325  rngcisoALTV  47113  ringcisoALTV  47147
  Copyright terms: Public domain W3C validator