![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelref | Structured version Visualization version GIF version |
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
Ref | Expression |
---|---|
eqvrelref.1 | ⊢ (𝜑 → EqvRel 𝑅) |
eqvrelref.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Ref | Expression |
---|---|
eqvrelref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelref.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | |
2 | eqvrelref.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
3 | eqvrelrel 38125 | . . . 4 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
4 | releldmb 5942 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
6 | 1, 5 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
7 | 2 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → EqvRel 𝑅) |
8 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
9 | 7, 8, 8 | eqvreltr4d 38137 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
10 | 6, 9 | exlimddv 1930 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 class class class wbr 5143 dom cdm 5672 Rel wrel 5677 EqvRel weqvrel 37722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-refrel 38040 df-symrel 38072 df-trrel 38102 df-eqvrel 38113 |
This theorem is referenced by: eqvrelth 38139 |
Copyright terms: Public domain | W3C validator |