Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelref Structured version   Visualization version   GIF version

Theorem eqvrelref 37101
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelref.1 (𝜑 → EqvRel 𝑅)
eqvrelref.2 (𝜑𝐴 ∈ dom 𝑅)
Assertion
Ref Expression
eqvrelref (𝜑𝐴𝑅𝐴)

Proof of Theorem eqvrelref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvrelref.2 . . 3 (𝜑𝐴 ∈ dom 𝑅)
2 eqvrelref.1 . . . 4 (𝜑 → EqvRel 𝑅)
3 eqvrelrel 37088 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
4 releldmb 5906 . . . 4 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
52, 3, 43syl 18 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
61, 5mpbid 231 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
72adantr 482 . . 3 ((𝜑𝐴𝑅𝑥) → EqvRel 𝑅)
8 simpr 486 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
97, 8, 8eqvreltr4d 37100 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
106, 9exlimddv 1939 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1782  wcel 2107   class class class wbr 5110  dom cdm 5638  Rel wrel 5643   EqvRel weqvrel 36680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 37003  df-symrel 37035  df-trrel 37065  df-eqvrel 37076
This theorem is referenced by:  eqvrelth  37102
  Copyright terms: Public domain W3C validator