Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelref Structured version   Visualization version   GIF version

Theorem eqvrelref 38601
Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.)
Hypotheses
Ref Expression
eqvrelref.1 (𝜑 → EqvRel 𝑅)
eqvrelref.2 (𝜑𝐴 ∈ dom 𝑅)
Assertion
Ref Expression
eqvrelref (𝜑𝐴𝑅𝐴)

Proof of Theorem eqvrelref
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqvrelref.2 . . 3 (𝜑𝐴 ∈ dom 𝑅)
2 eqvrelref.1 . . . 4 (𝜑 → EqvRel 𝑅)
3 eqvrelrel 38588 . . . 4 ( EqvRel 𝑅 → Rel 𝑅)
4 releldmb 5910 . . . 4 (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
52, 3, 43syl 18 . . 3 (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
61, 5mpbid 232 . 2 (𝜑 → ∃𝑥 𝐴𝑅𝑥)
72adantr 480 . . 3 ((𝜑𝐴𝑅𝑥) → EqvRel 𝑅)
8 simpr 484 . . 3 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝑥)
97, 8, 8eqvreltr4d 38600 . 2 ((𝜑𝐴𝑅𝑥) → 𝐴𝑅𝐴)
106, 9exlimddv 1935 1 (𝜑𝐴𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109   class class class wbr 5107  dom cdm 5638  Rel wrel 5643   EqvRel weqvrel 38186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-refrel 38503  df-symrel 38535  df-trrel 38565  df-eqvrel 38576
This theorem is referenced by:  eqvrelth  38602
  Copyright terms: Public domain W3C validator