| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelref | Structured version Visualization version GIF version | ||
| Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 2-Jun-2019.) |
| Ref | Expression |
|---|---|
| eqvrelref.1 | ⊢ (𝜑 → EqvRel 𝑅) |
| eqvrelref.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| Ref | Expression |
|---|---|
| eqvrelref | ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelref.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) | |
| 2 | eqvrelref.1 | . . . 4 ⊢ (𝜑 → EqvRel 𝑅) | |
| 3 | eqvrelrel 38595 | . . . 4 ⊢ ( EqvRel 𝑅 → Rel 𝑅) | |
| 4 | releldmb 5913 | . . . 4 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| 6 | 1, 5 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 𝐴𝑅𝑥) |
| 7 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → EqvRel 𝑅) |
| 8 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝑥) | |
| 9 | 7, 8, 8 | eqvreltr4d 38607 | . 2 ⊢ ((𝜑 ∧ 𝐴𝑅𝑥) → 𝐴𝑅𝐴) |
| 10 | 6, 9 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝐴𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Rel wrel 5646 EqvRel weqvrel 38193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-refrel 38510 df-symrel 38542 df-trrel 38572 df-eqvrel 38583 |
| This theorem is referenced by: eqvrelth 38609 |
| Copyright terms: Public domain | W3C validator |