MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrni Structured version   Visualization version   GIF version

Theorem relelrni 5895
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1 Rel 𝑅
Assertion
Ref Expression
relelrni (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)

Proof of Theorem relelrni
StepHypRef Expression
1 releldm.1 . 2 Rel 𝑅
2 relelrn 5891 . 2 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅)
31, 2mpan 690 1 (𝐴𝑅𝐵𝐵 ∈ ran 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5095  ran crn 5624  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  fpwwe2lem11  10554  lern  18515  brres2  38245  brfvrcld2  43668
  Copyright terms: Public domain W3C validator