![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvrcld2 | Structured version Visualization version GIF version |
Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brfvrcld2.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvrcld2 | ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvrcld2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | brfvrcld 38509 | . 2 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) |
3 | relexp0g 13970 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | 4 | breqd 4797 | . . . 4 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ 𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵)) |
6 | relres 5567 | . . . . . . . 8 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
7 | 6 | releldmi 5500 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | 6 | relelrni 5501 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
9 | dmresi 5598 | . . . . . . . . . 10 ⊢ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
10 | 9 | eleq2i 2842 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
11 | 10 | biimpi 206 | . . . . . . . 8 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
12 | rnresi 5620 | . . . . . . . . . 10 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 12 | eleq2i 2842 | . . . . . . . . 9 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
14 | 13 | biimpi 206 | . . . . . . . 8 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
15 | 11, 14 | anim12i 592 | . . . . . . 7 ⊢ ((𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 7, 8, 15 | syl2anc 565 | . . . . . 6 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | resieq 5548 | . . . . . 6 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) → (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ 𝐴 = 𝐵)) | |
18 | 16, 17 | biadan2 802 | . . . . 5 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) |
19 | df-3an 1073 | . . . . 5 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) | |
20 | 18, 19 | bitr4i 267 | . . . 4 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵)) |
21 | 5, 20 | syl6bb 276 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵))) |
22 | 1 | relexp1d 13979 | . . . 4 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
23 | 22 | breqd 4797 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟1)𝐵 ↔ 𝐴𝑅𝐵)) |
24 | 21, 23 | orbi12d 892 | . 2 ⊢ (𝜑 → ((𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
25 | 2, 24 | bitrd 268 | 1 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∪ cun 3721 class class class wbr 4786 I cid 5156 dom cdm 5249 ran crn 5250 ↾ cres 5251 ‘cfv 6031 (class class class)co 6793 0cc0 10138 1c1 10139 ↑𝑟crelexp 13968 r*crcl 38490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-seq 13009 df-relexp 13969 df-rcl 38491 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |