![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvrcld2 | Structured version Visualization version GIF version |
Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brfvrcld2.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvrcld2 | ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvrcld2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | brfvrcld 43653 | . 2 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) |
3 | relexp0g 15071 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | 4 | breqd 5177 | . . . 4 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ 𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵)) |
6 | relres 6035 | . . . . . . . 8 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
7 | 6 | releldmi 5973 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | 6 | relelrni 5974 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
9 | dmresi 6081 | . . . . . . . . . 10 ⊢ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
10 | 9 | eleq2i 2836 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
11 | 10 | biimpi 216 | . . . . . . . 8 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
12 | rnresi 6104 | . . . . . . . . . 10 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 12 | eleq2i 2836 | . . . . . . . . 9 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
14 | 13 | biimpi 216 | . . . . . . . 8 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
15 | 11, 14 | anim12i 612 | . . . . . . 7 ⊢ ((𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 7, 8, 15 | syl2anc 583 | . . . . . 6 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | resieq 6020 | . . . . . 6 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) → (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ 𝐴 = 𝐵)) | |
18 | 16, 17 | biadanii 821 | . . . . 5 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) |
19 | df-3an 1089 | . . . . 5 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) | |
20 | 18, 19 | bitr4i 278 | . . . 4 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵)) |
21 | 5, 20 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵))) |
22 | 1 | relexp1d 15078 | . . . 4 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
23 | 22 | breqd 5177 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟1)𝐵 ↔ 𝐴𝑅𝐵)) |
24 | 21, 23 | orbi12d 917 | . 2 ⊢ (𝜑 → ((𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
25 | 2, 24 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 class class class wbr 5166 I cid 5592 dom cdm 5700 ran crn 5701 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ↑𝑟crelexp 15068 r*crcl 43634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-relexp 15069 df-rcl 43635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |