![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvrcld2 | Structured version Visualization version GIF version |
Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brfvrcld2.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvrcld2 | ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvrcld2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | brfvrcld 43152 | . 2 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) |
3 | relexp0g 15009 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | 4 | breqd 5163 | . . . 4 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ 𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵)) |
6 | relres 6015 | . . . . . . . 8 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
7 | 6 | releldmi 5954 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | 6 | relelrni 5955 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
9 | dmresi 6060 | . . . . . . . . . 10 ⊢ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
10 | 9 | eleq2i 2821 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
11 | 10 | biimpi 215 | . . . . . . . 8 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
12 | rnresi 6083 | . . . . . . . . . 10 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 12 | eleq2i 2821 | . . . . . . . . 9 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
14 | 13 | biimpi 215 | . . . . . . . 8 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
15 | 11, 14 | anim12i 611 | . . . . . . 7 ⊢ ((𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 7, 8, 15 | syl2anc 582 | . . . . . 6 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | resieq 6000 | . . . . . 6 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) → (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ 𝐴 = 𝐵)) | |
18 | 16, 17 | biadanii 820 | . . . . 5 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) |
19 | df-3an 1086 | . . . . 5 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) | |
20 | 18, 19 | bitr4i 277 | . . . 4 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵)) |
21 | 5, 20 | bitrdi 286 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵))) |
22 | 1 | relexp1d 15016 | . . . 4 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
23 | 22 | breqd 5163 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟1)𝐵 ↔ 𝐴𝑅𝐵)) |
24 | 21, 23 | orbi12d 916 | . 2 ⊢ (𝜑 → ((𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
25 | 2, 24 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∪ cun 3947 class class class wbr 5152 I cid 5579 dom cdm 5682 ran crn 5683 ↾ cres 5684 ‘cfv 6553 (class class class)co 7426 0cc0 11146 1c1 11147 ↑𝑟crelexp 15006 r*crcl 43133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-seq 14007 df-relexp 15007 df-rcl 43134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |