![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvrcld2 | Structured version Visualization version GIF version |
Description: If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brfvrcld2.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvrcld2 | ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvrcld2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | brfvrcld 43186 | . 2 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) |
3 | relexp0g 15001 | . . . . . 6 ⊢ (𝑅 ∈ V → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
5 | 4 | breqd 5154 | . . . 4 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ 𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵)) |
6 | relres 6005 | . . . . . . . 8 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
7 | 6 | releldmi 5944 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
8 | 6 | relelrni 5945 | . . . . . . 7 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) |
9 | dmresi 6050 | . . . . . . . . . 10 ⊢ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
10 | 9 | eleq2i 2817 | . . . . . . . . 9 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
11 | 10 | biimpi 215 | . . . . . . . 8 ⊢ (𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐴 ∈ (dom 𝑅 ∪ ran 𝑅)) |
12 | rnresi 6073 | . . . . . . . . . 10 ⊢ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅) | |
13 | 12 | eleq2i 2817 | . . . . . . . . 9 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↔ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
14 | 13 | biimpi 215 | . . . . . . . 8 ⊢ (𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) → 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) |
15 | 11, 14 | anim12i 611 | . . . . . . 7 ⊢ ((𝐴 ∈ dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐵 ∈ ran ( I ↾ (dom 𝑅 ∪ ran 𝑅))) → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 7, 8, 15 | syl2anc 582 | . . . . . 6 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 → (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | resieq 5990 | . . . . . 6 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) → (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ 𝐴 = 𝐵)) | |
18 | 16, 17 | biadanii 820 | . . . . 5 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) |
19 | df-3an 1086 | . . . . 5 ⊢ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅)) ∧ 𝐴 = 𝐵)) | |
20 | 18, 19 | bitr4i 277 | . . . 4 ⊢ (𝐴( I ↾ (dom 𝑅 ∪ ran 𝑅))𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵)) |
21 | 5, 20 | bitrdi 286 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟0)𝐵 ↔ (𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵))) |
22 | 1 | relexp1d 15008 | . . . 4 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
23 | 22 | breqd 5154 | . . 3 ⊢ (𝜑 → (𝐴(𝑅↑𝑟1)𝐵 ↔ 𝐴𝑅𝐵)) |
24 | 21, 23 | orbi12d 916 | . 2 ⊢ (𝜑 → ((𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵) ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
25 | 2, 24 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∪ cun 3937 class class class wbr 5143 I cid 5569 dom cdm 5672 ran crn 5673 ↾ cres 5674 ‘cfv 6543 (class class class)co 7416 0cc0 11138 1c1 11139 ↑𝑟crelexp 14998 r*crcl 43167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-seq 13999 df-relexp 14999 df-rcl 43168 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |