| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5924 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 dom cdm 5654 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 |
| This theorem is referenced by: fpwwe2lem10 10654 fpwwe2lem11 10655 fpwwe2lem12 10656 rlimpm 15516 rlimdm 15567 iserex 15673 caucvgrlem2 15691 caucvgr 15692 caurcvg2 15694 caucvg 15695 fsumcvg3 15745 cvgcmpce 15834 climcnds 15867 trirecip 15879 ledm 18600 cmetcaulem 25240 ovoliunlem1 25455 mbflimlem 25620 dvaddf 25897 dvmulf 25898 dvcof 25904 dvcnv 25933 abelthlem5 26397 emcllem6 26963 lgamgulmlem4 26994 hlimcaui 31217 brfvrcld2 43716 sumnnodd 45659 climliminf 45835 stirlinglem12 46114 fouriersw 46260 rlimdmafv 47206 rlimdmafv2 47287 |
| Copyright terms: Public domain | W3C validator |