Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5842 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 dom cdm 5580 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 |
This theorem is referenced by: fpwwe2lem10 10327 fpwwe2lem11 10328 fpwwe2lem12 10329 rlimpm 15137 rlimdm 15188 iserex 15296 caucvgrlem2 15314 caucvgr 15315 caurcvg2 15317 caucvg 15318 fsumcvg3 15369 cvgcmpce 15458 climcnds 15491 trirecip 15503 ledm 18223 cmetcaulem 24357 ovoliunlem1 24571 mbflimlem 24736 dvaddf 25011 dvmulf 25012 dvcof 25017 dvcnv 25046 abelthlem5 25499 emcllem6 26055 lgamgulmlem4 26086 hlimcaui 29499 brfvrcld2 41189 sumnnodd 43061 climliminf 43237 stirlinglem12 43516 fouriersw 43662 rlimdmafv 44556 rlimdmafv2 44637 |
Copyright terms: Public domain | W3C validator |