![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5957 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 dom cdm 5688 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-dm 5698 |
This theorem is referenced by: fpwwe2lem10 10677 fpwwe2lem11 10678 fpwwe2lem12 10679 rlimpm 15532 rlimdm 15583 iserex 15689 caucvgrlem2 15707 caucvgr 15708 caurcvg2 15710 caucvg 15711 fsumcvg3 15761 cvgcmpce 15850 climcnds 15883 trirecip 15895 ledm 18647 cmetcaulem 25335 ovoliunlem1 25550 mbflimlem 25715 dvaddf 25993 dvmulf 25994 dvcof 26000 dvcnv 26029 abelthlem5 26493 emcllem6 27058 lgamgulmlem4 27089 hlimcaui 31264 brfvrcld2 43681 sumnnodd 45585 climliminf 45761 stirlinglem12 46040 fouriersw 46186 rlimdmafv 47126 rlimdmafv2 47207 |
Copyright terms: Public domain | W3C validator |