| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5890 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 dom cdm 5623 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 |
| This theorem is referenced by: fpwwe2lem10 10553 fpwwe2lem11 10554 fpwwe2lem12 10555 rlimpm 15425 rlimdm 15476 iserex 15582 caucvgrlem2 15600 caucvgr 15601 caurcvg2 15603 caucvg 15604 fsumcvg3 15654 cvgcmpce 15743 climcnds 15776 trirecip 15788 ledm 18514 cmetcaulem 25204 ovoliunlem1 25419 mbflimlem 25584 dvaddf 25861 dvmulf 25862 dvcof 25868 dvcnv 25897 abelthlem5 26361 emcllem6 26927 lgamgulmlem4 26958 hlimcaui 31198 brfvrcld2 43665 sumnnodd 45612 climliminf 45788 stirlinglem12 46067 fouriersw 46213 rlimdmafv 47162 rlimdmafv2 47243 |
| Copyright terms: Public domain | W3C validator |