| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5884 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-dm 5626 |
| This theorem is referenced by: fpwwe2lem10 10528 fpwwe2lem11 10529 fpwwe2lem12 10530 rlimpm 15404 rlimdm 15455 iserex 15561 caucvgrlem2 15579 caucvgr 15580 caurcvg2 15582 caucvg 15583 fsumcvg3 15633 cvgcmpce 15722 climcnds 15755 trirecip 15767 ledm 18493 cmetcaulem 25213 ovoliunlem1 25428 mbflimlem 25593 dvaddf 25870 dvmulf 25871 dvcof 25877 dvcnv 25906 abelthlem5 26370 emcllem6 26936 lgamgulmlem4 26967 hlimcaui 31211 brfvrcld2 43724 sumnnodd 45669 climliminf 45843 stirlinglem12 46122 fouriersw 46268 rlimdmafv 47207 rlimdmafv2 47288 |
| Copyright terms: Public domain | W3C validator |