| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5888 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 dom cdm 5619 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 |
| This theorem is referenced by: fpwwe2lem10 10538 fpwwe2lem11 10539 fpwwe2lem12 10540 rlimpm 15409 rlimdm 15460 iserex 15566 caucvgrlem2 15584 caucvgr 15585 caurcvg2 15587 caucvg 15588 fsumcvg3 15638 cvgcmpce 15727 climcnds 15760 trirecip 15772 ledm 18498 cmetcaulem 25216 ovoliunlem1 25431 mbflimlem 25596 dvaddf 25873 dvmulf 25874 dvcof 25880 dvcnv 25909 abelthlem5 26373 emcllem6 26939 lgamgulmlem4 26970 hlimcaui 31218 brfvrcld2 43809 sumnnodd 45754 climliminf 45928 stirlinglem12 46207 fouriersw 46353 rlimdmafv 47301 rlimdmafv2 47382 |
| Copyright terms: Public domain | W3C validator |