![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5969 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 |
This theorem is referenced by: fpwwe2lem10 10709 fpwwe2lem11 10710 fpwwe2lem12 10711 rlimpm 15546 rlimdm 15597 iserex 15705 caucvgrlem2 15723 caucvgr 15724 caurcvg2 15726 caucvg 15727 fsumcvg3 15777 cvgcmpce 15866 climcnds 15899 trirecip 15911 ledm 18660 cmetcaulem 25341 ovoliunlem1 25556 mbflimlem 25721 dvaddf 25999 dvmulf 26000 dvcof 26006 dvcnv 26035 abelthlem5 26497 emcllem6 27062 lgamgulmlem4 27093 hlimcaui 31268 brfvrcld2 43654 sumnnodd 45551 climliminf 45727 stirlinglem12 46006 fouriersw 46152 rlimdmafv 47092 rlimdmafv2 47173 |
Copyright terms: Public domain | W3C validator |