Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5853 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 |
This theorem is referenced by: fpwwe2lem10 10396 fpwwe2lem11 10397 fpwwe2lem12 10398 rlimpm 15209 rlimdm 15260 iserex 15368 caucvgrlem2 15386 caucvgr 15387 caurcvg2 15389 caucvg 15390 fsumcvg3 15441 cvgcmpce 15530 climcnds 15563 trirecip 15575 ledm 18308 cmetcaulem 24452 ovoliunlem1 24666 mbflimlem 24831 dvaddf 25106 dvmulf 25107 dvcof 25112 dvcnv 25141 abelthlem5 25594 emcllem6 26150 lgamgulmlem4 26181 hlimcaui 29598 brfvrcld2 41300 sumnnodd 43171 climliminf 43347 stirlinglem12 43626 fouriersw 43772 rlimdmafv 44669 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |