| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5908 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 dom cdm 5638 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 |
| This theorem is referenced by: fpwwe2lem10 10593 fpwwe2lem11 10594 fpwwe2lem12 10595 rlimpm 15466 rlimdm 15517 iserex 15623 caucvgrlem2 15641 caucvgr 15642 caurcvg2 15644 caucvg 15645 fsumcvg3 15695 cvgcmpce 15784 climcnds 15817 trirecip 15829 ledm 18549 cmetcaulem 25188 ovoliunlem1 25403 mbflimlem 25568 dvaddf 25845 dvmulf 25846 dvcof 25852 dvcnv 25881 abelthlem5 26345 emcllem6 26911 lgamgulmlem4 26942 hlimcaui 31165 brfvrcld2 43681 sumnnodd 45628 climliminf 45804 stirlinglem12 46083 fouriersw 46229 rlimdmafv 47178 rlimdmafv2 47259 |
| Copyright terms: Public domain | W3C validator |