| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| releldm.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | releldm 5911 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 |
| This theorem is referenced by: fpwwe2lem10 10600 fpwwe2lem11 10601 fpwwe2lem12 10602 rlimpm 15473 rlimdm 15524 iserex 15630 caucvgrlem2 15648 caucvgr 15649 caurcvg2 15651 caucvg 15652 fsumcvg3 15702 cvgcmpce 15791 climcnds 15824 trirecip 15836 ledm 18556 cmetcaulem 25195 ovoliunlem1 25410 mbflimlem 25575 dvaddf 25852 dvmulf 25853 dvcof 25859 dvcnv 25888 abelthlem5 26352 emcllem6 26918 lgamgulmlem4 26949 hlimcaui 31172 brfvrcld2 43688 sumnnodd 45635 climliminf 45811 stirlinglem12 46090 fouriersw 46236 rlimdmafv 47182 rlimdmafv2 47263 |
| Copyright terms: Public domain | W3C validator |