Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5852 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5079 dom cdm 5590 Rel wrel 5595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-xp 5596 df-rel 5597 df-dm 5600 |
This theorem is referenced by: fpwwe2lem10 10397 fpwwe2lem11 10398 fpwwe2lem12 10399 rlimpm 15207 rlimdm 15258 iserex 15366 caucvgrlem2 15384 caucvgr 15385 caurcvg2 15387 caucvg 15388 fsumcvg3 15439 cvgcmpce 15528 climcnds 15561 trirecip 15573 ledm 18306 cmetcaulem 24450 ovoliunlem1 24664 mbflimlem 24829 dvaddf 25104 dvmulf 25105 dvcof 25110 dvcnv 25139 abelthlem5 25592 emcllem6 26148 lgamgulmlem4 26179 hlimcaui 29594 brfvrcld2 41270 sumnnodd 43142 climliminf 43318 stirlinglem12 43597 fouriersw 43743 rlimdmafv 44637 rlimdmafv2 44718 |
Copyright terms: Public domain | W3C validator |