![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldmi | Structured version Visualization version GIF version |
Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.) |
Ref | Expression |
---|---|
releldm.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
releldmi | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm.1 | . 2 ⊢ Rel 𝑅 | |
2 | releldm 5562 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
3 | 1, 2 | mpan 682 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 class class class wbr 4843 dom cdm 5312 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-dm 5322 |
This theorem is referenced by: fpwwe2lem11 9750 fpwwe2lem12 9751 fpwwe2lem13 9752 rlimpm 14572 rlimdm 14623 iserex 14728 caucvgrlem2 14746 caucvgr 14747 caurcvg2 14749 caucvg 14750 fsumcvg3 14801 cvgcmpce 14888 climcnds 14921 trirecip 14933 ledm 17539 cmetcaulem 23414 ovoliunlem1 23610 mbflimlem 23775 dvaddf 24046 dvmulf 24047 dvcof 24052 dvcnv 24081 abelthlem5 24530 emcllem6 25079 lgamgulmlem4 25110 hlimcaui 28618 brfvrcld2 38767 sumnnodd 40606 climliminf 40782 stirlinglem12 41045 fouriersw 41191 rlimdmafv 42031 rlimdmafv2 42112 |
Copyright terms: Public domain | W3C validator |