![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdmrnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of relssdmrn 6266 as of 23-Dec-2024. (Contributed by NM, 3-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relssdmrnOLD | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | 19.8a 2167 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 19.8a 2167 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
4 | opelxp 5708 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴)) | |
5 | vex 3473 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 5 | eldm2 5898 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
7 | vex 3473 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | 7 | elrn2 5889 | . . . . . 6 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 6, 8 | anbi12i 626 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
10 | 4, 9 | bitri 275 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
11 | 2, 3, 10 | sylanbrc 582 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)) |
12 | 11 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))) |
13 | 1, 12 | relssdv 5784 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 ⊆ wss 3944 ⟨cop 4630 × cxp 5670 dom cdm 5672 ran crn 5673 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |