![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdmrnOLD | Structured version Visualization version GIF version |
Description: Obsolete version of relssdmrn 6267 as of 23-Dec-2024. (Contributed by NM, 3-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relssdmrnOLD | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | 19.8a 2174 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 19.8a 2174 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
4 | opelxp 5712 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴)) | |
5 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 5 | eldm2 5901 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
7 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | 7 | elrn2 5892 | . . . . . 6 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 6, 8 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑦 ∈ ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
10 | 4, 9 | bitri 274 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴)) |
11 | 2, 3, 10 | sylanbrc 583 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)) |
12 | 11 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))) |
13 | 1, 12 | relssdv 5788 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ⊆ wss 3948 ⟨cop 4634 × cxp 5674 dom cdm 5676 ran crn 5677 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |