MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssxp Structured version   Visualization version   GIF version

Theorem resssxp 6222
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
resssxp ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))

Proof of Theorem resssxp
StepHypRef Expression
1 df-ima 5636 . . 3 (𝑅𝐴) = ran (𝑅𝐴)
21sseq1i 3966 . 2 ((𝑅𝐴) ⊆ 𝐵 ↔ ran (𝑅𝐴) ⊆ 𝐵)
3 dmres 5967 . . . 4 dom (𝑅𝐴) = (𝐴 ∩ dom 𝑅)
4 inss1 4190 . . . 4 (𝐴 ∩ dom 𝑅) ⊆ 𝐴
53, 4eqsstri 3984 . . 3 dom (𝑅𝐴) ⊆ 𝐴
65biantrur 530 . 2 (ran (𝑅𝐴) ⊆ 𝐵 ↔ (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
7 relres 5960 . . . . 5 Rel (𝑅𝐴)
8 relssdmrn 6221 . . . . 5 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴)))
97, 8ax-mp 5 . . . 4 (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴))
10 xpss12 5638 . . . 4 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (dom (𝑅𝐴) × ran (𝑅𝐴)) ⊆ (𝐴 × 𝐵))
119, 10sstrid 3949 . . 3 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝐴 × 𝐵))
12 dmss 5849 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ dom (𝐴 × 𝐵))
13 dmxpss 6124 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
1412, 13sstrdi 3950 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ 𝐴)
15 rnss 5885 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ ran (𝐴 × 𝐵))
16 rnxpss 6125 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
1715, 16sstrdi 3950 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ 𝐵)
1814, 17jca 511 . . 3 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
1911, 18impbii 209 . 2 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
202, 6, 193bitri 297 1 ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3904  wss 3905   × cxp 5621  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636
This theorem is referenced by:  gsumpart  33029  dfhe2  43767
  Copyright terms: Public domain W3C validator