![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resssxp | Structured version Visualization version GIF version |
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
resssxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5682 | . . 3 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
2 | 1 | sseq1i 4005 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
3 | dmres 5996 | . . . 4 ⊢ dom (𝑅 ↾ 𝐴) = (𝐴 ∩ dom 𝑅) | |
4 | inss1 4223 | . . . 4 ⊢ (𝐴 ∩ dom 𝑅) ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 4011 | . . 3 ⊢ dom (𝑅 ↾ 𝐴) ⊆ 𝐴 |
6 | 5 | biantrur 530 | . 2 ⊢ (ran (𝑅 ↾ 𝐴) ⊆ 𝐵 ↔ (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
7 | relres 6003 | . . . . 5 ⊢ Rel (𝑅 ↾ 𝐴) | |
8 | relssdmrn 6260 | . . . . 5 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) |
10 | xpss12 5684 | . . . 4 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | sstrid 3988 | . . 3 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
12 | dmss 5895 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ dom (𝐴 × 𝐵)) | |
13 | dmxpss 6163 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
14 | 12, 13 | sstrdi 3989 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ 𝐴) |
15 | rnss 5931 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ ran (𝐴 × 𝐵)) | |
16 | rnxpss 6164 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
17 | 15, 16 | sstrdi 3989 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
18 | 14, 17 | jca 511 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
19 | 11, 18 | impbii 208 | . 2 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
20 | 2, 6, 19 | 3bitri 297 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∩ cin 3942 ⊆ wss 3943 × cxp 5667 dom cdm 5669 ran crn 5670 ↾ cres 5671 “ cima 5672 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 |
This theorem is referenced by: gsumpart 32710 dfhe2 43083 |
Copyright terms: Public domain | W3C validator |