MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssxp Structured version   Visualization version   GIF version

Theorem resssxp 6243
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
resssxp ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))

Proof of Theorem resssxp
StepHypRef Expression
1 df-ima 5651 . . 3 (𝑅𝐴) = ran (𝑅𝐴)
21sseq1i 3975 . 2 ((𝑅𝐴) ⊆ 𝐵 ↔ ran (𝑅𝐴) ⊆ 𝐵)
3 dmres 5983 . . . 4 dom (𝑅𝐴) = (𝐴 ∩ dom 𝑅)
4 inss1 4200 . . . 4 (𝐴 ∩ dom 𝑅) ⊆ 𝐴
53, 4eqsstri 3993 . . 3 dom (𝑅𝐴) ⊆ 𝐴
65biantrur 530 . 2 (ran (𝑅𝐴) ⊆ 𝐵 ↔ (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
7 relres 5976 . . . . 5 Rel (𝑅𝐴)
8 relssdmrn 6241 . . . . 5 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴)))
97, 8ax-mp 5 . . . 4 (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴))
10 xpss12 5653 . . . 4 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (dom (𝑅𝐴) × ran (𝑅𝐴)) ⊆ (𝐴 × 𝐵))
119, 10sstrid 3958 . . 3 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝐴 × 𝐵))
12 dmss 5866 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ dom (𝐴 × 𝐵))
13 dmxpss 6144 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
1412, 13sstrdi 3959 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ 𝐴)
15 rnss 5903 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ ran (𝐴 × 𝐵))
16 rnxpss 6145 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
1715, 16sstrdi 3959 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ 𝐵)
1814, 17jca 511 . . 3 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
1911, 18impbii 209 . 2 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
202, 6, 193bitri 297 1 ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3913  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  gsumpart  32997  dfhe2  43763
  Copyright terms: Public domain W3C validator