MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resssxp Structured version   Visualization version   GIF version

Theorem resssxp 6301
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.)
Assertion
Ref Expression
resssxp ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))

Proof of Theorem resssxp
StepHypRef Expression
1 df-ima 5713 . . 3 (𝑅𝐴) = ran (𝑅𝐴)
21sseq1i 4037 . 2 ((𝑅𝐴) ⊆ 𝐵 ↔ ran (𝑅𝐴) ⊆ 𝐵)
3 dmres 6041 . . . 4 dom (𝑅𝐴) = (𝐴 ∩ dom 𝑅)
4 inss1 4258 . . . 4 (𝐴 ∩ dom 𝑅) ⊆ 𝐴
53, 4eqsstri 4043 . . 3 dom (𝑅𝐴) ⊆ 𝐴
65biantrur 530 . 2 (ran (𝑅𝐴) ⊆ 𝐵 ↔ (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
7 relres 6035 . . . . 5 Rel (𝑅𝐴)
8 relssdmrn 6299 . . . . 5 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴)))
97, 8ax-mp 5 . . . 4 (𝑅𝐴) ⊆ (dom (𝑅𝐴) × ran (𝑅𝐴))
10 xpss12 5715 . . . 4 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (dom (𝑅𝐴) × ran (𝑅𝐴)) ⊆ (𝐴 × 𝐵))
119, 10sstrid 4020 . . 3 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) → (𝑅𝐴) ⊆ (𝐴 × 𝐵))
12 dmss 5927 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ dom (𝐴 × 𝐵))
13 dmxpss 6202 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
1412, 13sstrdi 4021 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅𝐴) ⊆ 𝐴)
15 rnss 5964 . . . . 5 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ ran (𝐴 × 𝐵))
16 rnxpss 6203 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
1715, 16sstrdi 4021 . . . 4 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅𝐴) ⊆ 𝐵)
1814, 17jca 511 . . 3 ((𝑅𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵))
1911, 18impbii 209 . 2 ((dom (𝑅𝐴) ⊆ 𝐴 ∧ ran (𝑅𝐴) ⊆ 𝐵) ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
202, 6, 193bitri 297 1 ((𝑅𝐴) ⊆ 𝐵 ↔ (𝑅𝐴) ⊆ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3975  wss 3976   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  gsumpart  33038  dfhe2  43736
  Copyright terms: Public domain W3C validator