| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resssxp | Structured version Visualization version GIF version | ||
| Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| resssxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima 5654 | . . 3 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
| 2 | 1 | sseq1i 3978 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
| 3 | dmres 5986 | . . . 4 ⊢ dom (𝑅 ↾ 𝐴) = (𝐴 ∩ dom 𝑅) | |
| 4 | inss1 4203 | . . . 4 ⊢ (𝐴 ∩ dom 𝑅) ⊆ 𝐴 | |
| 5 | 3, 4 | eqsstri 3996 | . . 3 ⊢ dom (𝑅 ↾ 𝐴) ⊆ 𝐴 |
| 6 | 5 | biantrur 530 | . 2 ⊢ (ran (𝑅 ↾ 𝐴) ⊆ 𝐵 ↔ (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
| 7 | relres 5979 | . . . . 5 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 8 | relssdmrn 6244 | . . . . 5 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴))) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) |
| 10 | xpss12 5656 | . . . 4 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) ⊆ (𝐴 × 𝐵)) | |
| 11 | 9, 10 | sstrid 3961 | . . 3 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
| 12 | dmss 5869 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ dom (𝐴 × 𝐵)) | |
| 13 | dmxpss 6147 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
| 14 | 12, 13 | sstrdi 3962 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ 𝐴) |
| 15 | rnss 5906 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ ran (𝐴 × 𝐵)) | |
| 16 | rnxpss 6148 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
| 17 | 15, 16 | sstrdi 3962 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
| 18 | 14, 17 | jca 511 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
| 19 | 11, 18 | impbii 209 | . 2 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
| 20 | 2, 6, 19 | 3bitri 297 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3916 ⊆ wss 3917 × cxp 5639 dom cdm 5641 ran crn 5642 ↾ cres 5643 “ cima 5644 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: gsumpart 33004 dfhe2 43770 |
| Copyright terms: Public domain | W3C validator |