![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resssxp | Structured version Visualization version GIF version |
Description: If the 𝑅-image of a class 𝐴 is a subclass of 𝐵, then the restriction of 𝑅 to 𝐴 is a subset of the Cartesian product of 𝐴 and 𝐵. (Contributed by RP, 24-Dec-2019.) |
Ref | Expression |
---|---|
resssxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5695 | . . 3 ⊢ (𝑅 “ 𝐴) = ran (𝑅 ↾ 𝐴) | |
2 | 1 | sseq1i 4010 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
3 | dmres 6021 | . . . 4 ⊢ dom (𝑅 ↾ 𝐴) = (𝐴 ∩ dom 𝑅) | |
4 | inss1 4231 | . . . 4 ⊢ (𝐴 ∩ dom 𝑅) ⊆ 𝐴 | |
5 | 3, 4 | eqsstri 4016 | . . 3 ⊢ dom (𝑅 ↾ 𝐴) ⊆ 𝐴 |
6 | 5 | biantrur 529 | . 2 ⊢ (ran (𝑅 ↾ 𝐴) ⊆ 𝐵 ↔ (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
7 | relres 6015 | . . . . 5 ⊢ Rel (𝑅 ↾ 𝐴) | |
8 | relssdmrn 6277 | . . . . 5 ⊢ (Rel (𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑅 ↾ 𝐴) ⊆ (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) |
10 | xpss12 5697 | . . . 4 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (dom (𝑅 ↾ 𝐴) × ran (𝑅 ↾ 𝐴)) ⊆ (𝐴 × 𝐵)) | |
11 | 9, 10 | sstrid 3993 | . . 3 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) → (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
12 | dmss 5909 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ dom (𝐴 × 𝐵)) | |
13 | dmxpss 6180 | . . . . 5 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 | |
14 | 12, 13 | sstrdi 3994 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → dom (𝑅 ↾ 𝐴) ⊆ 𝐴) |
15 | rnss 5945 | . . . . 5 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ ran (𝐴 × 𝐵)) | |
16 | rnxpss 6181 | . . . . 5 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 | |
17 | 15, 16 | sstrdi 3994 | . . . 4 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → ran (𝑅 ↾ 𝐴) ⊆ 𝐵) |
18 | 14, 17 | jca 510 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵) → (dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵)) |
19 | 11, 18 | impbii 208 | . 2 ⊢ ((dom (𝑅 ↾ 𝐴) ⊆ 𝐴 ∧ ran (𝑅 ↾ 𝐴) ⊆ 𝐵) ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
20 | 2, 6, 19 | 3bitri 296 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐵 ↔ (𝑅 ↾ 𝐴) ⊆ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∩ cin 3948 ⊆ wss 3949 × cxp 5680 dom cdm 5682 ran crn 5683 ↾ cres 5684 “ cima 5685 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 |
This theorem is referenced by: gsumpart 32790 dfhe2 43235 |
Copyright terms: Public domain | W3C validator |