| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldisjun | Structured version Visualization version GIF version | ||
| Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
| Ref | Expression |
|---|---|
| reldisjun | ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5920 | . . 3 ⊢ (dom 𝑅 = (𝐴 ∪ 𝐵) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) | |
| 2 | 1 | 3ad2ant2 1134 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) |
| 3 | resdm 5972 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = 𝑅) |
| 5 | resundi 5939 | . . 3 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
| 7 | 2, 4, 6 | 3eqtr3d 2773 | 1 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∪ cun 3898 ∩ cin 3899 ∅c0 4281 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 |
| This theorem is referenced by: fressupp 32659 cycpmconjslem2 33114 evlselvlem 42598 |
| Copyright terms: Public domain | W3C validator |