Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reldisjun | Structured version Visualization version GIF version |
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
Ref | Expression |
---|---|
reldisjun | ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5875 | . . 3 ⊢ (dom 𝑅 = (𝐴 ∪ 𝐵) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) | |
2 | 1 | 3ad2ant2 1132 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) |
3 | resdm 5925 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
4 | 3 | 3ad2ant1 1131 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = 𝑅) |
5 | resundi 5894 | . . 3 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
6 | 5 | a1i 11 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
7 | 2, 4, 6 | 3eqtr3d 2786 | 1 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∪ cun 3881 ∩ cin 3882 ∅c0 4253 dom cdm 5580 ↾ cres 5582 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 |
This theorem is referenced by: fressupp 30924 cycpmconjslem2 31324 |
Copyright terms: Public domain | W3C validator |