![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldisjun | Structured version Visualization version GIF version |
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
Ref | Expression |
---|---|
reldisjun | ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5966 | . . 3 ⊢ (dom 𝑅 = (𝐴 ∪ 𝐵) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) | |
2 | 1 | 3ad2ant2 1131 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴 ∪ 𝐵))) |
3 | resdm 6016 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅) | |
4 | 3 | 3ad2ant1 1130 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = 𝑅) |
5 | resundi 5985 | . . 3 ⊢ (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵)) | |
6 | 5 | a1i 11 | . 2 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑅 ↾ (𝐴 ∪ 𝐵)) = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
7 | 2, 4, 6 | 3eqtr3d 2772 | 1 ⊢ ((Rel 𝑅 ∧ dom 𝑅 = (𝐴 ∪ 𝐵) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑅 = ((𝑅 ↾ 𝐴) ∪ (𝑅 ↾ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∪ cun 3938 ∩ cin 3939 ∅c0 4314 dom cdm 5666 ↾ cres 5668 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-dm 5676 df-res 5678 |
This theorem is referenced by: fressupp 32345 cycpmconjslem2 32748 evlselvlem 41613 |
Copyright terms: Public domain | W3C validator |