MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisjun Structured version   Visualization version   GIF version

Theorem reldisjun 6003
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Assertion
Ref Expression
reldisjun ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑅 = ((𝑅𝐴) ∪ (𝑅𝐵)))

Proof of Theorem reldisjun
StepHypRef Expression
1 reseq2 5945 . . 3 (dom 𝑅 = (𝐴𝐵) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴𝐵)))
213ad2ant2 1134 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴𝐵)))
3 resdm 5997 . . 3 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
433ad2ant1 1133 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = 𝑅)
5 resundi 5964 . . 3 (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵))
65a1i 11 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵)))
72, 4, 63eqtr3d 2772 1 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑅 = ((𝑅𝐴) ∪ (𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  cun 3912  cin 3913  c0 4296  dom cdm 5638  cres 5640  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-dm 5648  df-res 5650
This theorem is referenced by:  fressupp  32611  cycpmconjslem2  33112  evlselvlem  42574
  Copyright terms: Public domain W3C validator