MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisjun Structured version   Visualization version   GIF version

Theorem reldisjun 5978
Description: Split a relation into two disjoint parts based on its domain. (Contributed by Thierry Arnoux, 9-Oct-2023.)
Assertion
Ref Expression
reldisjun ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑅 = ((𝑅𝐴) ∪ (𝑅𝐵)))

Proof of Theorem reldisjun
StepHypRef Expression
1 reseq2 5920 . . 3 (dom 𝑅 = (𝐴𝐵) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴𝐵)))
213ad2ant2 1134 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = (𝑅 ↾ (𝐴𝐵)))
3 resdm 5972 . . 3 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
433ad2ant1 1133 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ dom 𝑅) = 𝑅)
5 resundi 5939 . . 3 (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵))
65a1i 11 . 2 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → (𝑅 ↾ (𝐴𝐵)) = ((𝑅𝐴) ∪ (𝑅𝐵)))
72, 4, 63eqtr3d 2773 1 ((Rel 𝑅 ∧ dom 𝑅 = (𝐴𝐵) ∧ (𝐴𝐵) = ∅) → 𝑅 = ((𝑅𝐴) ∪ (𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  cun 3898  cin 3899  c0 4281  dom cdm 5614  cres 5616  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-res 5626
This theorem is referenced by:  fressupp  32659  cycpmconjslem2  33114  evlselvlem  42598
  Copyright terms: Public domain W3C validator