![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresdfunsn | Structured version Visualization version GIF version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.) |
Ref | Expression |
---|---|
funresdfunsn | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6595 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | resdmdfsn 6060 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
4 | 3 | adantr 480 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
5 | 4 | uneq1d 4190 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
6 | funfn 6608 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
7 | fnsnsplit 7218 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) | |
8 | 6, 7 | sylanb 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
9 | 5, 8 | eqtr4d 2783 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 {csn 4648 〈cop 4654 dom cdm 5700 ↾ cres 5702 Rel wrel 5705 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: setsidvald 17246 setsidvaldOLD 17247 |
Copyright terms: Public domain | W3C validator |