MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresdfunsn Structured version   Visualization version   GIF version

Theorem funresdfunsn 7192
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
funresdfunsn ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)

Proof of Theorem funresdfunsn
StepHypRef Expression
1 funrel 6564 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 resdmdfsn 6031 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
31, 2syl 17 . . . 4 (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
43adantr 480 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
54uneq1d 4149 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
6 funfn 6577 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
7 fnsnsplit 7187 . . 3 ((𝐹 Fn dom 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
86, 7sylanb 581 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
95, 8eqtr4d 2772 1 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cdif 3930  cun 3931  {csn 4608  cop 4614  dom cdm 5667  cres 5669  Rel wrel 5672  Fun wfun 6536   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550
This theorem is referenced by:  setsidvald  17219
  Copyright terms: Public domain W3C validator