MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresdfunsn Structured version   Visualization version   GIF version

Theorem funresdfunsn 7136
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018.)
Assertion
Ref Expression
funresdfunsn ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)

Proof of Theorem funresdfunsn
StepHypRef Expression
1 funrel 6519 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 resdmdfsn 5988 . . . . 5 (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
31, 2syl 17 . . . 4 (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
43adantr 482 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋})))
54uneq1d 4123 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
6 funfn 6532 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
7 fnsnsplit 7131 . . 3 ((𝐹 Fn dom 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
86, 7sylanb 582 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → 𝐹 = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
95, 8eqtr4d 2776 1 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  cdif 3908  cun 3909  {csn 4587  cop 4593  dom cdm 5634  cres 5636  Rel wrel 5639  Fun wfun 6491   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505
This theorem is referenced by:  setsidvald  17076  setsidvaldOLD  17077
  Copyright terms: Public domain W3C validator