| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resima | Structured version Visualization version GIF version | ||
| Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
| Ref | Expression |
|---|---|
| resima | ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | residm 5997 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 2 | 1 | rneqi 5917 | . 2 ⊢ ran ((𝐴 ↾ 𝐵) ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
| 3 | df-ima 5667 | . 2 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = ran ((𝐴 ↾ 𝐵) ↾ 𝐵) | |
| 4 | df-ima 5667 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4i 2768 | 1 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: isarep2 6628 f1imacnv 6834 foimacnv 6835 dffv2 6974 fssrescdmd 7116 islindf4 21798 qtopres 23636 aks6d1c6lem4 42186 |
| Copyright terms: Public domain | W3C validator |