MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima Structured version   Visualization version   GIF version

Theorem resima 5925
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)

Proof of Theorem resima
StepHypRef Expression
1 residm 5924 . . 3 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
21rneqi 5846 . 2 ran ((𝐴𝐵) ↾ 𝐵) = ran (𝐴𝐵)
3 df-ima 5602 . 2 ((𝐴𝐵) “ 𝐵) = ran ((𝐴𝐵) ↾ 𝐵)
4 df-ima 5602 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2776 1 ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ran crn 5590  cres 5591  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  isarep2  6523  f1imacnv  6732  foimacnv  6733  dffv2  6863  islindf4  21045  qtopres  22849
  Copyright terms: Public domain W3C validator