MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima Structured version   Visualization version   GIF version

Theorem resima 6013
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)

Proof of Theorem resima
StepHypRef Expression
1 residm 6012 . . 3 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
21rneqi 5934 . 2 ran ((𝐴𝐵) ↾ 𝐵) = ran (𝐴𝐵)
3 df-ima 5688 . 2 ((𝐴𝐵) “ 𝐵) = ran ((𝐴𝐵) ↾ 𝐵)
4 df-ima 5688 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2770 1 ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ran crn 5676  cres 5677  cima 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688
This theorem is referenced by:  isarep2  6636  f1imacnv  6846  foimacnv  6847  dffv2  6983  islindf4  21384  qtopres  23193
  Copyright terms: Public domain W3C validator