![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resima | Structured version Visualization version GIF version |
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
Ref | Expression |
---|---|
resima | ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | residm 6010 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5934 | . 2 ⊢ ran ((𝐴 ↾ 𝐵) ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5686 | . 2 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = ran ((𝐴 ↾ 𝐵) ↾ 𝐵) | |
4 | df-ima 5686 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2764 | 1 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ran crn 5674 ↾ cres 5675 “ cima 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-xp 5679 df-rel 5680 df-cnv 5681 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 |
This theorem is referenced by: isarep2 6640 f1imacnv 6849 foimacnv 6850 dffv2 6987 fssrescdmd 7130 islindf4 21830 qtopres 23688 aks6d1c6lem4 41883 |
Copyright terms: Public domain | W3C validator |