MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima Structured version   Visualization version   GIF version

Theorem resima 6015
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)

Proof of Theorem resima
StepHypRef Expression
1 residm 6010 . . 3 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
21rneqi 5934 . 2 ran ((𝐴𝐵) ↾ 𝐵) = ran (𝐴𝐵)
3 df-ima 5686 . 2 ((𝐴𝐵) “ 𝐵) = ran ((𝐴𝐵) ↾ 𝐵)
4 df-ima 5686 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2764 1 ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  ran crn 5674  cres 5675  cima 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686
This theorem is referenced by:  isarep2  6640  f1imacnv  6849  foimacnv  6850  dffv2  6987  fssrescdmd  7130  islindf4  21830  qtopres  23688  aks6d1c6lem4  41883
  Copyright terms: Public domain W3C validator