| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resima | Structured version Visualization version GIF version | ||
| Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
| Ref | Expression |
|---|---|
| resima | ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | residm 5981 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 2 | 1 | rneqi 5901 | . 2 ⊢ ran ((𝐴 ↾ 𝐵) ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
| 3 | df-ima 5651 | . 2 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = ran ((𝐴 ↾ 𝐵) ↾ 𝐵) | |
| 4 | df-ima 5651 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ran crn 5639 ↾ cres 5640 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: isarep2 6608 f1imacnv 6816 foimacnv 6817 dffv2 6956 fssrescdmd 7098 islindf4 21747 qtopres 23585 aks6d1c6lem4 42161 |
| Copyright terms: Public domain | W3C validator |