MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun2 Structured version   Visualization version   GIF version

Theorem fvsnun2 7119
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 7118. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsnun.1 (𝜑𝐴𝑉)
fvsnun.2 (𝜑𝐵𝑊)
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
fvsnun2.4 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
Assertion
Ref Expression
fvsnun2 (𝜑 → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . . 6 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5926 . . . . 5 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴}))
32a1i 11 . . . 4 (𝜑 → (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})))
4 resundir 5945 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})))
54a1i 11 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))))
6 disjdif 4423 . . . . . . 7 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
7 fvsnun.1 . . . . . . . . 9 (𝜑𝐴𝑉)
8 fvsnun.2 . . . . . . . . 9 (𝜑𝐵𝑊)
9 fnsng 6534 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
107, 8, 9syl2anc 584 . . . . . . . 8 (𝜑 → {⟨𝐴, 𝐵⟩} Fn {𝐴})
11 fnresdisj 6602 . . . . . . . 8 ({⟨𝐴, 𝐵⟩} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
1210, 11syl 17 . . . . . . 7 (𝜑 → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
136, 12mpbii 233 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅)
14 residm 5961 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1514a1i 11 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
1613, 15uneq12d 4120 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))))
17 uncom 4109 . . . . . 6 (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅)
1817a1i 11 . . . . 5 (𝜑 → (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅))
19 un0 4345 . . . . . 6 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
2019a1i 11 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
2116, 18, 203eqtrd 2768 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
223, 5, 213eqtrd 2768 . . 3 (𝜑 → (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
2322fveq1d 6824 . 2 (𝜑 → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷))
24 fvsnun2.4 . . 3 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
2524fvresd 6842 . 2 (𝜑 → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺𝐷))
2624fvresd 6842 . 2 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
2723, 25, 263eqtr3d 2772 1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cdif 3900  cun 3901  cin 3902  c0 4284  {csn 4577  cop 4583  cres 5621   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  facnn  14182  satfv1lem  35335
  Copyright terms: Public domain W3C validator