MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun2 Structured version   Visualization version   GIF version

Theorem fvsnun2 7181
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 7180. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 25-Feb-2023.)
Hypotheses
Ref Expression
fvsnun.1 (𝜑𝐴𝑉)
fvsnun.2 (𝜑𝐵𝑊)
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
fvsnun2.4 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
Assertion
Ref Expression
fvsnun2 (𝜑 → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . . 6 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 5978 . . . . 5 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴}))
32a1i 11 . . . 4 (𝜑 → (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})))
4 resundir 5997 . . . . 5 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})))
54a1i 11 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))))
6 disjdif 4472 . . . . . . 7 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
7 fvsnun.1 . . . . . . . . 9 (𝜑𝐴𝑉)
8 fvsnun.2 . . . . . . . . 9 (𝜑𝐵𝑊)
9 fnsng 6601 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} Fn {𝐴})
107, 8, 9syl2anc 585 . . . . . . . 8 (𝜑 → {⟨𝐴, 𝐵⟩} Fn {𝐴})
11 fnresdisj 6671 . . . . . . . 8 ({⟨𝐴, 𝐵⟩} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
1210, 11syl 17 . . . . . . 7 (𝜑 → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
136, 12mpbii 232 . . . . . 6 (𝜑 → ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅)
14 residm 6015 . . . . . . 7 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1514a1i 11 . . . . . 6 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
1613, 15uneq12d 4165 . . . . 5 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))))
17 uncom 4154 . . . . . 6 (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅)
1817a1i 11 . . . . 5 (𝜑 → (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅))
19 un0 4391 . . . . . 6 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
2019a1i 11 . . . . 5 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
2116, 18, 203eqtrd 2777 . . . 4 (𝜑 → (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
223, 5, 213eqtrd 2777 . . 3 (𝜑 → (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})))
2322fveq1d 6894 . 2 (𝜑 → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷))
24 fvsnun2.4 . . 3 (𝜑𝐷 ∈ (𝐶 ∖ {𝐴}))
2524fvresd 6912 . 2 (𝜑 → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺𝐷))
2624fvresd 6912 . 2 (𝜑 → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
2723, 25, 263eqtr3d 2781 1 (𝜑 → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  cdif 3946  cun 3947  cin 3948  c0 4323  {csn 4629  cop 4635  cres 5679   Fn wfn 6539  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552
This theorem is referenced by:  facnn  14235  satfv1lem  34353
  Copyright terms: Public domain W3C validator