Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpiidm Structured version   Visualization version   GIF version

Theorem relexpiidm 40405
Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexpiidm ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))

Proof of Theorem relexpiidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . 5 (𝑥 = 0 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟0))
21eqeq1d 2800 . . . 4 (𝑥 = 0 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴)))
32imbi2d 344 . . 3 (𝑥 = 0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))))
4 oveq2 7143 . . . . 5 (𝑥 = 𝑦 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑦))
54eqeq1d 2800 . . . 4 (𝑥 = 𝑦 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)))
65imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))))
7 oveq2 7143 . . . . 5 (𝑥 = (𝑦 + 1) → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟(𝑦 + 1)))
87eqeq1d 2800 . . . 4 (𝑥 = (𝑦 + 1) → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))
98imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
10 oveq2 7143 . . . . 5 (𝑥 = 𝑁 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑁))
1110eqeq1d 2800 . . . 4 (𝑥 = 𝑁 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
1211imbi2d 344 . . 3 (𝑥 = 𝑁 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))))
13 resiexg 7601 . . . . 5 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
14 relexp0g 14373 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
1513, 14syl 17 . . . 4 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
16 dmresi 5888 . . . . . . 7 dom ( I ↾ 𝐴) = 𝐴
17 rnresi 5910 . . . . . . 7 ran ( I ↾ 𝐴) = 𝐴
1816, 17uneq12i 4088 . . . . . 6 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = (𝐴𝐴)
19 unidm 4079 . . . . . 6 (𝐴𝐴) = 𝐴
2018, 19eqtri 2821 . . . . 5 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = 𝐴
2120reseq2i 5815 . . . 4 ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))) = ( I ↾ 𝐴)
2215, 21eqtrdi 2849 . . 3 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))
23 relres 5847 . . . . . . . . 9 Rel ( I ↾ 𝐴)
2423a1i 11 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → Rel ( I ↾ 𝐴))
25 simp3 1135 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
2624, 25relexpsucrd 14384 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)))
27 simp1 1133 . . . . . . . . 9 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))
2827coeq1d 5696 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)))
29 coires1 6084 . . . . . . . . 9 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ↾ 𝐴)
30 residm 5851 . . . . . . . . 9 (( I ↾ 𝐴) ↾ 𝐴) = ( I ↾ 𝐴)
3129, 30eqtri 2821 . . . . . . . 8 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴)
3228, 31eqtrdi 2849 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴))
3326, 32eqtrd 2833 . . . . . 6 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))
34333exp 1116 . . . . 5 ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (𝐴𝑉 → (𝑦 ∈ ℕ0 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3534com13 88 . . . 4 (𝑦 ∈ ℕ0 → (𝐴𝑉 → ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3635a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)) → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
373, 6, 9, 12, 22, 36nn0ind 12065 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
3837impcom 411 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cun 3879   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523  Rel wrel 5524  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-relexp 14371
This theorem is referenced by:  relexpmulg  40411  relexpxpmin  40418
  Copyright terms: Public domain W3C validator