Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpiidm Structured version   Visualization version   GIF version

Theorem relexpiidm 43687
Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexpiidm ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))

Proof of Theorem relexpiidm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑥 = 0 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟0))
21eqeq1d 2731 . . . 4 (𝑥 = 0 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴)))
32imbi2d 340 . . 3 (𝑥 = 0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))))
4 oveq2 7357 . . . . 5 (𝑥 = 𝑦 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑦))
54eqeq1d 2731 . . . 4 (𝑥 = 𝑦 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))))
7 oveq2 7357 . . . . 5 (𝑥 = (𝑦 + 1) → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟(𝑦 + 1)))
87eqeq1d 2731 . . . 4 (𝑥 = (𝑦 + 1) → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))
98imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
10 oveq2 7357 . . . . 5 (𝑥 = 𝑁 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑁))
1110eqeq1d 2731 . . . 4 (𝑥 = 𝑁 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
1211imbi2d 340 . . 3 (𝑥 = 𝑁 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))))
13 resiexg 7845 . . . . 5 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
14 relexp0g 14929 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
1513, 14syl 17 . . . 4 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))))
16 dmresi 6003 . . . . . . 7 dom ( I ↾ 𝐴) = 𝐴
17 rnresi 6026 . . . . . . 7 ran ( I ↾ 𝐴) = 𝐴
1816, 17uneq12i 4117 . . . . . 6 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = (𝐴𝐴)
19 unidm 4108 . . . . . 6 (𝐴𝐴) = 𝐴
2018, 19eqtri 2752 . . . . 5 (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴)) = 𝐴
2120reseq2i 5927 . . . 4 ( I ↾ (dom ( I ↾ 𝐴) ∪ ran ( I ↾ 𝐴))) = ( I ↾ 𝐴)
2215, 21eqtrdi 2780 . . 3 (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾ 𝐴))
23 relres 5956 . . . . . . . . 9 Rel ( I ↾ 𝐴)
2423a1i 11 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → Rel ( I ↾ 𝐴))
25 simp3 1138 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
2624, 25relexpsucrd 14940 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)))
27 simp1 1136 . . . . . . . . 9 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))
2827coeq1d 5804 . . . . . . . 8 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)))
29 coires1 6213 . . . . . . . . 9 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ↾ 𝐴)
30 residm 5961 . . . . . . . . 9 (( I ↾ 𝐴) ↾ 𝐴) = ( I ↾ 𝐴)
3129, 30eqtri 2752 . . . . . . . 8 (( I ↾ 𝐴) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴)
3228, 31eqtrdi 2780 . . . . . . 7 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴))
3326, 32eqtrd 2764 . . . . . 6 (((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴𝑉𝑦 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))
34333exp 1119 . . . . 5 ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (𝐴𝑉 → (𝑦 ∈ ℕ0 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3534com13 88 . . . 4 (𝑦 ∈ ℕ0 → (𝐴𝑉 → ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
3635a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)) → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))))
373, 6, 9, 12, 22, 36nn0ind 12571 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))
3837impcom 407 1 ((𝐴𝑉𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901   I cid 5513  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  0cn0 12384  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-relexp 14927
This theorem is referenced by:  relexpmulg  43693  relexpxpmin  43700
  Copyright terms: Public domain W3C validator