| Step | Hyp | Ref
| Expression |
| 1 | | nn0re 12535 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 2 | 1 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ) |
| 3 | 2 | recnd 11289 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ) |
| 4 | | ax-1cn 11213 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 5 | | addcom 11447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + 1) =
(1 + 𝑁)) |
| 6 | 3, 4, 5 | sylancl 586 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁)) |
| 7 | | diffi 9215 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
| 8 | 7 | 3ad2ant2 1135 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
| 9 | | fzfid 14014 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin) |
| 10 | | disjdifr 4473 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ |
| 11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
| 12 | | hashun 14421 |
. . . . . . . . 9
⊢ (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
| 13 | 8, 9, 11, 12 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
| 14 | | uncom 4158 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) |
| 15 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴) |
| 16 | | undif 4482 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
| 17 | 15, 16 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
| 18 | 14, 17 | eqtrid 2789 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
| 19 | 18 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴)) |
| 20 | | hashfz1 14385 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
| 21 | 20 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...𝑁)) =
𝑁) |
| 22 | 21 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
| 23 | 13, 19, 22 | 3eqtr3d 2785 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
| 24 | 6, 23 | oveq12d 7449 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
| 25 | 24 | fveq2d 6910 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))) |
| 26 | | 1zzd 12648 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 1 ∈
ℤ) |
| 27 | | hashcl 14395 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
| 28 | 8, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
| 29 | 28 | nn0zd 12639 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ) |
| 30 | | nn0z 12638 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 31 | 30 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ) |
| 32 | | fzen 13581 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
| 33 | 26, 29, 31, 32 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
| 34 | 33 | ensymd 9045 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
| 35 | | fzfi 14013 |
. . . . . . 7
⊢ ((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin |
| 36 | | fzfi 14013 |
. . . . . . 7
⊢
(1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin |
| 37 | | hashen 14386 |
. . . . . . 7
⊢ ((((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧
(1...(♯‘(𝐴
∖ (1...𝑁)))) ∈
Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
| 38 | 35, 36, 37 | mp2an 692 |
. . . . . 6
⊢
((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
| 39 | 34, 38 | sylibr 234 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
| 40 | | hashfz1 14385 |
. . . . . 6
⊢
((♯‘(𝐴
∖ (1...𝑁))) ∈
ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
| 41 | 28, 40 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
| 42 | 25, 39, 41 | 3eqtrd 2781 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
| 43 | | fzfi 14013 |
. . . . 5
⊢ ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin |
| 44 | | hashen 14386 |
. . . . 5
⊢ ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) →
((♯‘((𝑁 +
1)...(♯‘𝐴))) =
(♯‘(𝐴 ∖
(1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
| 45 | 43, 8, 44 | sylancr 587 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
| 46 | 42, 45 | mpbid 232 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))) |
| 47 | | bren 8995 |
. . 3
⊢ (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
| 48 | 46, 47 | sylib 218 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
| 49 | | simpl1 1192 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈
ℕ0) |
| 50 | 49 | nn0zd 12639 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ) |
| 51 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin) |
| 52 | | hashcl 14395 |
. . . . . 6
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℕ0) |
| 53 | 51, 52 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈
ℕ0) |
| 54 | 53 | nn0zd 12639 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ) |
| 55 | | nn0addge2 12573 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧
(♯‘(𝐴 ∖
(1...𝑁))) ∈
ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
| 56 | 2, 28, 55 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
| 57 | 56, 23 | breqtrrd 5171 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴)) |
| 58 | 57 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴)) |
| 59 | | eluz2 12884 |
. . . 4
⊢
((♯‘𝐴)
∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴))) |
| 60 | 50, 54, 58, 59 | syl3anbrc 1344 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ≥‘𝑁)) |
| 61 | | vex 3484 |
. . . . 5
⊢ 𝑎 ∈ V |
| 62 | | ovex 7464 |
. . . . . 6
⊢
(1...𝑁) ∈
V |
| 63 | | resiexg 7934 |
. . . . . 6
⊢
((1...𝑁) ∈ V
→ ( I ↾ (1...𝑁))
∈ V) |
| 64 | 62, 63 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (1...𝑁)) ∈
V |
| 65 | 61, 64 | unex 7764 |
. . . 4
⊢ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V |
| 66 | 65 | a1i 11 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V) |
| 67 | | simpr 484 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
| 68 | | f1oi 6886 |
. . . . . 6
⊢ ( I
↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁) |
| 69 | 68 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 70 | | incom 4209 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) |
| 71 | 49 | nn0red 12588 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ) |
| 72 | 71 | ltp1d 12198 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1)) |
| 73 | | fzdisj 13591 |
. . . . . . 7
⊢ (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
| 74 | 72, 73 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
| 75 | 70, 74 | eqtrid 2789 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅) |
| 76 | 10 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
| 77 | | f1oun 6867 |
. . . . 5
⊢ (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
| 78 | 67, 69, 75, 76, 77 | syl22anc 839 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
| 79 | | uncom 4158 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))) |
| 80 | | fzsplit1nn0 42765 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝐴)
∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
| 81 | 49, 53, 58, 80 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
| 82 | 79, 81 | eqtr4id 2796 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴))) |
| 83 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴) |
| 84 | 83, 16 | sylib 218 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
| 85 | 14, 84 | eqtrid 2789 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
| 86 | | f1oeq23 6839 |
. . . . 5
⊢
(((((𝑁 +
1)...(♯‘𝐴))
∪ (1...𝑁)) =
(1...(♯‘𝐴))
∧ ((𝐴 ∖
(1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 87 | 82, 85, 86 | syl2anc 584 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 88 | 78, 87 | mpbid 232 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 89 | | resundir 6012 |
. . . 4
⊢ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) |
| 90 | | dmres 6030 |
. . . . . . . 8
⊢ dom
(𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎) |
| 91 | | f1odm 6852 |
. . . . . . . . . . 11
⊢ (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
| 92 | 91 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
| 93 | 92 | ineq2d 4220 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))) |
| 94 | 93, 74 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅) |
| 95 | 90, 94 | eqtrid 2789 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅) |
| 96 | | relres 6023 |
. . . . . . . 8
⊢ Rel
(𝑎 ↾ (1...𝑁)) |
| 97 | | reldm0 5938 |
. . . . . . . 8
⊢ (Rel
(𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)) |
| 98 | 96, 97 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅) |
| 99 | 95, 98 | sylibr 234 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅) |
| 100 | | residm 6028 |
. . . . . . 7
⊢ (( I
↾ (1...𝑁)) ↾
(1...𝑁)) = ( I ↾
(1...𝑁)) |
| 101 | 100 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
| 102 | 99, 101 | uneq12d 4169 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁)))) |
| 103 | | uncom 4158 |
. . . . . 6
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= (( I ↾ (1...𝑁))
∪ ∅) |
| 104 | | un0 4394 |
. . . . . 6
⊢ (( I
↾ (1...𝑁)) ∪
∅) = ( I ↾ (1...𝑁)) |
| 105 | 103, 104 | eqtri 2765 |
. . . . 5
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= ( I ↾ (1...𝑁)) |
| 106 | 102, 105 | eqtrdi 2793 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁))) |
| 107 | 89, 106 | eqtrid 2789 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
| 108 | | oveq2 7439 |
. . . . . 6
⊢ (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴))) |
| 109 | 108 | f1oeq2d 6844 |
. . . . 5
⊢ (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto→𝐴 ↔ 𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 110 | 109 | anbi1d 631 |
. . . 4
⊢ (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
| 111 | | f1oeq1 6836 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
| 112 | | reseq1 5991 |
. . . . . 6
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁))) |
| 113 | 112 | eqeq1d 2739 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
| 114 | 111, 113 | anbi12d 632 |
. . . 4
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
| 115 | 110, 114 | rspc2ev 3635 |
. . 3
⊢
(((♯‘𝐴)
∈ (ℤ≥‘𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
| 116 | 60, 66, 88, 107, 115 | syl112anc 1376 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
| 117 | 48, 116 | exlimddv 1935 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈
(ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |