Step | Hyp | Ref
| Expression |
1 | | nn0re 11928 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
2 | 1 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ) |
3 | 2 | recnd 10692 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ) |
4 | | ax-1cn 10618 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
5 | | addcom 10849 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + 1) =
(1 + 𝑁)) |
6 | 3, 4, 5 | sylancl 590 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁)) |
7 | | diffi 8764 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
8 | 7 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
9 | | fzfid 13375 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin) |
10 | | incom 4102 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ((1...𝑁) ∩ (𝐴 ∖ (1...𝑁))) |
11 | | disjdif 4361 |
. . . . . . . . . . 11
⊢
((1...𝑁) ∩
(𝐴 ∖ (1...𝑁))) = ∅ |
12 | 10, 11 | eqtri 2782 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
14 | | hashun 13778 |
. . . . . . . . 9
⊢ (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
15 | 8, 9, 13, 14 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
16 | | uncom 4054 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) |
17 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴) |
18 | | undif 4371 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
19 | 17, 18 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
20 | 16, 19 | syl5eq 2806 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
21 | 20 | fveq2d 6655 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴)) |
22 | | hashfz1 13741 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
23 | 22 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...𝑁)) =
𝑁) |
24 | 23 | oveq2d 7159 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
25 | 15, 21, 24 | 3eqtr3d 2802 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
26 | 6, 25 | oveq12d 7161 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
27 | 26 | fveq2d 6655 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))) |
28 | | 1zzd 12037 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 1 ∈
ℤ) |
29 | | hashcl 13752 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
30 | 8, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
31 | 30 | nn0zd 12109 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ) |
32 | | nn0z 12029 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
33 | 32 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ) |
34 | | fzen 12958 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
35 | 28, 31, 33, 34 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
36 | 35 | ensymd 8571 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
37 | | fzfi 13374 |
. . . . . . 7
⊢ ((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin |
38 | | fzfi 13374 |
. . . . . . 7
⊢
(1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin |
39 | | hashen 13742 |
. . . . . . 7
⊢ ((((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧
(1...(♯‘(𝐴
∖ (1...𝑁)))) ∈
Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
40 | 37, 38, 39 | mp2an 692 |
. . . . . 6
⊢
((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
41 | 36, 40 | sylibr 237 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
42 | | hashfz1 13741 |
. . . . . 6
⊢
((♯‘(𝐴
∖ (1...𝑁))) ∈
ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
43 | 30, 42 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
44 | 27, 41, 43 | 3eqtrd 2798 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
45 | | fzfi 13374 |
. . . . 5
⊢ ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin |
46 | | hashen 13742 |
. . . . 5
⊢ ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) →
((♯‘((𝑁 +
1)...(♯‘𝐴))) =
(♯‘(𝐴 ∖
(1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
47 | 45, 8, 46 | sylancr 591 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
48 | 44, 47 | mpbid 235 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))) |
49 | | bren 8529 |
. . 3
⊢ (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
50 | 48, 49 | sylib 221 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
51 | | simpl1 1189 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈
ℕ0) |
52 | 51 | nn0zd 12109 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ) |
53 | | simpl2 1190 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin) |
54 | | hashcl 13752 |
. . . . . 6
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℕ0) |
55 | 53, 54 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈
ℕ0) |
56 | 55 | nn0zd 12109 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ) |
57 | | nn0addge2 11966 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧
(♯‘(𝐴 ∖
(1...𝑁))) ∈
ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
58 | 2, 30, 57 | syl2anc 588 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
59 | 58, 25 | breqtrrd 5053 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴)) |
60 | 59 | adantr 485 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴)) |
61 | | eluz2 12273 |
. . . 4
⊢
((♯‘𝐴)
∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴))) |
62 | 52, 56, 60, 61 | syl3anbrc 1341 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ≥‘𝑁)) |
63 | | vex 3411 |
. . . . 5
⊢ 𝑎 ∈ V |
64 | | ovex 7176 |
. . . . . 6
⊢
(1...𝑁) ∈
V |
65 | | resiexg 7617 |
. . . . . 6
⊢
((1...𝑁) ∈ V
→ ( I ↾ (1...𝑁))
∈ V) |
66 | 64, 65 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (1...𝑁)) ∈
V |
67 | 63, 66 | unex 7460 |
. . . 4
⊢ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V |
68 | 67 | a1i 11 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V) |
69 | | simpr 489 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
70 | | f1oi 6632 |
. . . . . 6
⊢ ( I
↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁) |
71 | 70 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) |
72 | | incom 4102 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) |
73 | 51 | nn0red 11980 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ) |
74 | 73 | ltp1d 11593 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1)) |
75 | | fzdisj 12968 |
. . . . . . 7
⊢ (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
76 | 74, 75 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
77 | 72, 76 | syl5eq 2806 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅) |
78 | 12 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
79 | | f1oun 6614 |
. . . . 5
⊢ (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
80 | 69, 71, 77, 78, 79 | syl22anc 838 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
81 | | uncom 4054 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))) |
82 | | fzsplit1nn0 40053 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝐴)
∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
83 | 51, 55, 60, 82 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
84 | 81, 83 | eqtr4id 2813 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴))) |
85 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴) |
86 | 85, 18 | sylib 221 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
87 | 16, 86 | syl5eq 2806 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
88 | | f1oeq23 6586 |
. . . . 5
⊢
(((((𝑁 +
1)...(♯‘𝐴))
∪ (1...𝑁)) =
(1...(♯‘𝐴))
∧ ((𝐴 ∖
(1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
89 | 84, 87, 88 | syl2anc 588 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
90 | 80, 89 | mpbid 235 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴) |
91 | | resundir 5831 |
. . . 4
⊢ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) |
92 | | dmres 5838 |
. . . . . . . 8
⊢ dom
(𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎) |
93 | | f1odm 6599 |
. . . . . . . . . . 11
⊢ (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
94 | 93 | adantl 486 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
95 | 94 | ineq2d 4113 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))) |
96 | 95, 76 | eqtrd 2794 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅) |
97 | 92, 96 | syl5eq 2806 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅) |
98 | | relres 5845 |
. . . . . . . 8
⊢ Rel
(𝑎 ↾ (1...𝑁)) |
99 | | reldm0 5762 |
. . . . . . . 8
⊢ (Rel
(𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)) |
100 | 98, 99 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅) |
101 | 97, 100 | sylibr 237 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅) |
102 | | residm 5849 |
. . . . . . 7
⊢ (( I
↾ (1...𝑁)) ↾
(1...𝑁)) = ( I ↾
(1...𝑁)) |
103 | 102 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
104 | 101, 103 | uneq12d 4065 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁)))) |
105 | | uncom 4054 |
. . . . . 6
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= (( I ↾ (1...𝑁))
∪ ∅) |
106 | | un0 4280 |
. . . . . 6
⊢ (( I
↾ (1...𝑁)) ∪
∅) = ( I ↾ (1...𝑁)) |
107 | 105, 106 | eqtri 2782 |
. . . . 5
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= ( I ↾ (1...𝑁)) |
108 | 104, 107 | eqtrdi 2810 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁))) |
109 | 91, 108 | syl5eq 2806 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
110 | | oveq2 7151 |
. . . . . 6
⊢ (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴))) |
111 | 110 | f1oeq2d 6591 |
. . . . 5
⊢ (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto→𝐴 ↔ 𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
112 | 111 | anbi1d 633 |
. . . 4
⊢ (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
113 | | f1oeq1 6583 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
114 | | reseq1 5810 |
. . . . . 6
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁))) |
115 | 114 | eqeq1d 2761 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
116 | 113, 115 | anbi12d 634 |
. . . 4
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
117 | 112, 116 | rspc2ev 3551 |
. . 3
⊢
(((♯‘𝐴)
∈ (ℤ≥‘𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
118 | 62, 68, 90, 109, 117 | syl112anc 1372 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
119 | 50, 118 | exlimddv 1937 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈
(ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |