Step | Hyp | Ref
| Expression |
1 | | nn0re 12251 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
2 | 1 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ) |
3 | 2 | recnd 11012 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ) |
4 | | ax-1cn 10938 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
5 | | addcom 11170 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + 1) =
(1 + 𝑁)) |
6 | 3, 4, 5 | sylancl 586 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁)) |
7 | | diffi 8971 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
8 | 7 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin) |
9 | | fzfid 13702 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin) |
10 | | disjdifr 4407 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅ |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
12 | | hashun 14106 |
. . . . . . . . 9
⊢ (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
13 | 8, 9, 11, 12 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁)))) |
14 | | uncom 4088 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) |
15 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴) |
16 | | undif 4416 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
17 | 15, 16 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
18 | 14, 17 | eqtrid 2791 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
19 | 18 | fveq2d 6787 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴)) |
20 | | hashfz1 14069 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
21 | 20 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...𝑁)) =
𝑁) |
22 | 21 | oveq2d 7300 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
23 | 13, 19, 22 | 3eqtr3d 2787 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
24 | 6, 23 | oveq12d 7302 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
25 | 24 | fveq2d 6787 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))) |
26 | | 1zzd 12360 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 1 ∈
ℤ) |
27 | | hashcl 14080 |
. . . . . . . . . 10
⊢ ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
28 | 8, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈
ℕ0) |
29 | 28 | nn0zd 12433 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ) |
30 | | nn0z 12352 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
31 | 30 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ) |
32 | | fzen 13282 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
33 | 26, 29, 31, 32 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(1...(♯‘(𝐴
∖ (1...𝑁)))) ≈
((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) |
34 | 33 | ensymd 8800 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
35 | | fzfi 13701 |
. . . . . . 7
⊢ ((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin |
36 | | fzfi 13701 |
. . . . . . 7
⊢
(1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin |
37 | | hashen 14070 |
. . . . . . 7
⊢ ((((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧
(1...(♯‘(𝐴
∖ (1...𝑁)))) ∈
Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
38 | 35, 36, 37 | mp2an 689 |
. . . . . 6
⊢
((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))) |
39 | 34, 38 | sylibr 233 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((1 +
𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) =
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁)))))) |
40 | | hashfz1 14069 |
. . . . . 6
⊢
((♯‘(𝐴
∖ (1...𝑁))) ∈
ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
41 | 28, 40 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) →
(♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
42 | 25, 39, 41 | 3eqtrd 2783 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁)))) |
43 | | fzfi 13701 |
. . . . 5
⊢ ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin |
44 | | hashen 14070 |
. . . . 5
⊢ ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) →
((♯‘((𝑁 +
1)...(♯‘𝐴))) =
(♯‘(𝐴 ∖
(1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
45 | 43, 8, 44 | sylancr 587 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))) |
46 | 42, 45 | mpbid 231 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))) |
47 | | bren 8752 |
. . 3
⊢ (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
48 | 46, 47 | sylib 217 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
49 | | simpl1 1190 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈
ℕ0) |
50 | 49 | nn0zd 12433 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ) |
51 | | simpl2 1191 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin) |
52 | | hashcl 14080 |
. . . . . 6
⊢ (𝐴 ∈ Fin →
(♯‘𝐴) ∈
ℕ0) |
53 | 51, 52 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈
ℕ0) |
54 | 53 | nn0zd 12433 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ) |
55 | | nn0addge2 12289 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧
(♯‘(𝐴 ∖
(1...𝑁))) ∈
ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
56 | 2, 28, 55 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) |
57 | 56, 23 | breqtrrd 5103 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴)) |
58 | 57 | adantr 481 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴)) |
59 | | eluz2 12597 |
. . . 4
⊢
((♯‘𝐴)
∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴))) |
60 | 50, 54, 58, 59 | syl3anbrc 1342 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ≥‘𝑁)) |
61 | | vex 3437 |
. . . . 5
⊢ 𝑎 ∈ V |
62 | | ovex 7317 |
. . . . . 6
⊢
(1...𝑁) ∈
V |
63 | | resiexg 7770 |
. . . . . 6
⊢
((1...𝑁) ∈ V
→ ( I ↾ (1...𝑁))
∈ V) |
64 | 62, 63 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (1...𝑁)) ∈
V |
65 | 61, 64 | unex 7605 |
. . . 4
⊢ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V |
66 | 65 | a1i 11 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V) |
67 | | simpr 485 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) |
68 | | f1oi 6763 |
. . . . . 6
⊢ ( I
↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁) |
69 | 68 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) |
70 | | incom 4136 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) |
71 | 49 | nn0red 12303 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ) |
72 | 71 | ltp1d 11914 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1)) |
73 | | fzdisj 13292 |
. . . . . . 7
⊢ (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
74 | 72, 73 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅) |
75 | 70, 74 | eqtrid 2791 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅) |
76 | 10 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) |
77 | | f1oun 6744 |
. . . . 5
⊢ (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
78 | 67, 69, 75, 76, 77 | syl22anc 836 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) |
79 | | uncom 4088 |
. . . . . 6
⊢ (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))) |
80 | | fzsplit1nn0 40583 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (♯‘𝐴)
∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
81 | 49, 53, 58, 80 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))) |
82 | 79, 81 | eqtr4id 2798 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴))) |
83 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴) |
84 | 83, 16 | sylib 217 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴) |
85 | 14, 84 | eqtrid 2791 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) |
86 | | f1oeq23 6716 |
. . . . 5
⊢
(((((𝑁 +
1)...(♯‘𝐴))
∪ (1...𝑁)) =
(1...(♯‘𝐴))
∧ ((𝐴 ∖
(1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
87 | 82, 85, 86 | syl2anc 584 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
88 | 78, 87 | mpbid 231 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴) |
89 | | resundir 5909 |
. . . 4
⊢ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) |
90 | | dmres 5916 |
. . . . . . . 8
⊢ dom
(𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎) |
91 | | f1odm 6729 |
. . . . . . . . . . 11
⊢ (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
92 | 91 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴))) |
93 | 92 | ineq2d 4147 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))) |
94 | 93, 74 | eqtrd 2779 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅) |
95 | 90, 94 | eqtrid 2791 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅) |
96 | | relres 5923 |
. . . . . . . 8
⊢ Rel
(𝑎 ↾ (1...𝑁)) |
97 | | reldm0 5840 |
. . . . . . . 8
⊢ (Rel
(𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)) |
98 | 96, 97 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅) |
99 | 95, 98 | sylibr 233 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅) |
100 | | residm 5927 |
. . . . . . 7
⊢ (( I
↾ (1...𝑁)) ↾
(1...𝑁)) = ( I ↾
(1...𝑁)) |
101 | 100 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
102 | 99, 101 | uneq12d 4099 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁)))) |
103 | | uncom 4088 |
. . . . . 6
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= (( I ↾ (1...𝑁))
∪ ∅) |
104 | | un0 4325 |
. . . . . 6
⊢ (( I
↾ (1...𝑁)) ∪
∅) = ( I ↾ (1...𝑁)) |
105 | 103, 104 | eqtri 2767 |
. . . . 5
⊢ (∅
∪ ( I ↾ (1...𝑁)))
= ( I ↾ (1...𝑁)) |
106 | 102, 105 | eqtrdi 2795 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁))) |
107 | 89, 106 | eqtrid 2791 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
108 | | oveq2 7292 |
. . . . . 6
⊢ (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴))) |
109 | 108 | f1oeq2d 6721 |
. . . . 5
⊢ (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto→𝐴 ↔ 𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴)) |
110 | 109 | anbi1d 630 |
. . . 4
⊢ (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
111 | | f1oeq1 6713 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴)) |
112 | | reseq1 5888 |
. . . . . 6
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁))) |
113 | 112 | eqeq1d 2741 |
. . . . 5
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
114 | 111, 113 | anbi12d 631 |
. . . 4
⊢ (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))) |
115 | 110, 114 | rspc2ev 3573 |
. . 3
⊢
(((♯‘𝐴)
∈ (ℤ≥‘𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto→𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
116 | 60, 66, 88, 107, 115 | syl112anc 1373 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
117 | 48, 116 | exlimddv 1939 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ Fin ∧
(1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈
(ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |