Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem1 Structured version   Visualization version   GIF version

Theorem eldioph2lem1 42755
Description: Lemma for eldioph2 42757. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Distinct variable groups:   𝐴,𝑑,𝑒   𝑁,𝑑,𝑒

Proof of Theorem eldioph2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12458 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
213ad2ant1 1133 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ)
32recnd 11209 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ)
4 ax-1cn 11133 . . . . . . . 8 1 ∈ ℂ
5 addcom 11367 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
63, 4, 5sylancl 586 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁))
7 diffi 9145 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin)
873ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin)
9 fzfid 13945 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin)
10 disjdifr 4439 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
1110a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
12 hashun 14354 . . . . . . . . 9 (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
138, 9, 11, 12syl3anc 1373 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
14 uncom 4124 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁)))
15 simp3 1138 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴)
16 undif 4448 . . . . . . . . . . 11 ((1...𝑁) ⊆ 𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
1715, 16sylib 218 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
1814, 17eqtrid 2777 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
1918fveq2d 6865 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴))
20 hashfz1 14318 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
21203ad2ant1 1133 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...𝑁)) = 𝑁)
2221oveq2d 7406 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
2313, 19, 223eqtr3d 2773 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
246, 23oveq12d 7408 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
2524fveq2d 6865 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))))
26 1zzd 12571 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 1 ∈ ℤ)
27 hashcl 14328 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
288, 27syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
2928nn0zd 12562 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ)
30 nn0z 12561 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
31303ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ)
32 fzen 13509 . . . . . . . 8 ((1 ∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3326, 29, 31, 32syl3anc 1373 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3433ensymd 8979 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
35 fzfi 13944 . . . . . . 7 ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin
36 fzfi 13944 . . . . . . 7 (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin
37 hashen 14319 . . . . . . 7 ((((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧ (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))))
3835, 36, 37mp2an 692 . . . . . 6 ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
3934, 38sylibr 234 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))))
40 hashfz1 14318 . . . . . 6 ((♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4128, 40syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4225, 39, 413eqtrd 2769 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))))
43 fzfi 13944 . . . . 5 ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin
44 hashen 14319 . . . . 5 ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4543, 8, 44sylancr 587 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4642, 45mpbid 232 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))
47 bren 8931 . . 3 (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
4846, 47sylib 218 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
49 simpl1 1192 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℕ0)
5049nn0zd 12562 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ)
51 simpl2 1193 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin)
52 hashcl 14328 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
5351, 52syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℕ0)
5453nn0zd 12562 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ)
55 nn0addge2 12496 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
562, 28, 55syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
5756, 23breqtrrd 5138 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴))
5857adantr 480 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴))
59 eluz2 12806 . . . 4 ((♯‘𝐴) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴)))
6050, 54, 58, 59syl3anbrc 1344 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ𝑁))
61 vex 3454 . . . . 5 𝑎 ∈ V
62 ovex 7423 . . . . . 6 (1...𝑁) ∈ V
63 resiexg 7891 . . . . . 6 ((1...𝑁) ∈ V → ( I ↾ (1...𝑁)) ∈ V)
6462, 63ax-mp 5 . . . . 5 ( I ↾ (1...𝑁)) ∈ V
6561, 64unex 7723 . . . 4 (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V
6665a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V)
67 simpr 484 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
68 f1oi 6841 . . . . . 6 ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)
6968a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁))
70 incom 4175 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))
7149nn0red 12511 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ)
7271ltp1d 12120 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1))
73 fzdisj 13519 . . . . . . 7 (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7472, 73syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7570, 74eqtrid 2777 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅)
7610a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
77 f1oun 6822 . . . . 5 (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
7867, 69, 75, 76, 77syl22anc 838 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
79 uncom 4124 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))
80 fzsplit1nn0 42749 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
8149, 53, 58, 80syl3anc 1373 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
8279, 81eqtr4id 2784 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)))
83 simpl3 1194 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴)
8483, 16sylib 218 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
8514, 84eqtrid 2777 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
86 f1oeq23 6794 . . . . 5 (((((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)) ∧ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
8782, 85, 86syl2anc 584 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
8878, 87mpbid 232 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴)
89 resundir 5968 . . . 4 ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁)))
90 dmres 5986 . . . . . . . 8 dom (𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎)
91 f1odm 6807 . . . . . . . . . . 11 (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9291adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9392ineq2d 4186 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))))
9493, 74eqtrd 2765 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅)
9590, 94eqtrid 2777 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅)
96 relres 5979 . . . . . . . 8 Rel (𝑎 ↾ (1...𝑁))
97 reldm0 5894 . . . . . . . 8 (Rel (𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅))
9896, 97ax-mp 5 . . . . . . 7 ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)
9995, 98sylibr 234 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅)
100 residm 5984 . . . . . . 7 (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))
101100a1i 11 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
10299, 101uneq12d 4135 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁))))
103 uncom 4124 . . . . . 6 (∅ ∪ ( I ↾ (1...𝑁))) = (( I ↾ (1...𝑁)) ∪ ∅)
104 un0 4360 . . . . . 6 (( I ↾ (1...𝑁)) ∪ ∅) = ( I ↾ (1...𝑁))
105103, 104eqtri 2753 . . . . 5 (∅ ∪ ( I ↾ (1...𝑁))) = ( I ↾ (1...𝑁))
106102, 105eqtrdi 2781 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁)))
10789, 106eqtrid 2777 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
108 oveq2 7398 . . . . . 6 (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴)))
109108f1oeq2d 6799 . . . . 5 (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto𝐴𝑒:(1...(♯‘𝐴))–1-1-onto𝐴))
110109anbi1d 631 . . . 4 (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
111 f1oeq1 6791 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
112 reseq1 5947 . . . . . 6 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)))
113112eqeq1d 2732 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
114111, 113anbi12d 632 . . . 4 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
115110, 114rspc2ev 3604 . . 3 (((♯‘𝐴) ∈ (ℤ𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11660, 66, 88, 107, 115syl112anc 1376 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11748, 116exlimddv 1935 1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299   class class class wbr 5110   I cid 5535  dom cdm 5641  cres 5643  Rel wrel 5646  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  Fincfn 8921  cc 11073  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  eldioph2  42757
  Copyright terms: Public domain W3C validator