Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem1 Structured version   Visualization version   GIF version

Theorem eldioph2lem1 39241
Description: Lemma for eldioph2 39243. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Distinct variable groups:   𝐴,𝑑,𝑒   𝑁,𝑑,𝑒

Proof of Theorem eldioph2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11900 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
213ad2ant1 1127 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ)
32recnd 10663 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ)
4 ax-1cn 10589 . . . . . . . 8 1 ∈ ℂ
5 addcom 10820 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
63, 4, 5sylancl 586 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁))
7 diffi 8744 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin)
873ad2ant2 1128 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin)
9 fzfid 13336 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin)
10 incom 4182 . . . . . . . . . . 11 ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ((1...𝑁) ∩ (𝐴 ∖ (1...𝑁)))
11 disjdif 4424 . . . . . . . . . . 11 ((1...𝑁) ∩ (𝐴 ∖ (1...𝑁))) = ∅
1210, 11eqtri 2849 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
1312a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
14 hashun 13738 . . . . . . . . 9 (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
158, 9, 13, 14syl3anc 1365 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
16 uncom 4133 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁)))
17 simp3 1132 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴)
18 undif 4433 . . . . . . . . . . 11 ((1...𝑁) ⊆ 𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
1917, 18sylib 219 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
2016, 19syl5eq 2873 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
2120fveq2d 6673 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴))
22 hashfz1 13701 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
23223ad2ant1 1127 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...𝑁)) = 𝑁)
2423oveq2d 7166 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
2515, 21, 243eqtr3d 2869 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
266, 25oveq12d 7168 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
2726fveq2d 6673 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))))
28 1zzd 12007 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 1 ∈ ℤ)
29 hashcl 13712 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
308, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
3130nn0zd 12079 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ)
32 nn0z 11999 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
33323ad2ant1 1127 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ)
34 fzen 12919 . . . . . . . 8 ((1 ∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3528, 31, 33, 34syl3anc 1365 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3635ensymd 8554 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
37 fzfi 13335 . . . . . . 7 ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin
38 fzfi 13335 . . . . . . 7 (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin
39 hashen 13702 . . . . . . 7 ((((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧ (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))))
4037, 38, 39mp2an 688 . . . . . 6 ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
4136, 40sylibr 235 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))))
42 hashfz1 13701 . . . . . 6 ((♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4330, 42syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4427, 41, 433eqtrd 2865 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))))
45 fzfi 13335 . . . . 5 ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin
46 hashen 13702 . . . . 5 ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4745, 8, 46sylancr 587 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4844, 47mpbid 233 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))
49 bren 8512 . . 3 (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
5048, 49sylib 219 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
51 simpl1 1185 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℕ0)
5251nn0zd 12079 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ)
53 simpl2 1186 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin)
54 hashcl 13712 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
5553, 54syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℕ0)
5655nn0zd 12079 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ)
57 nn0addge2 11938 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
582, 30, 57syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
5958, 25breqtrrd 5091 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴))
6059adantr 481 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴))
61 eluz2 12243 . . . 4 ((♯‘𝐴) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴)))
6252, 56, 60, 61syl3anbrc 1337 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ𝑁))
63 vex 3503 . . . . 5 𝑎 ∈ V
64 ovex 7183 . . . . . 6 (1...𝑁) ∈ V
65 resiexg 7612 . . . . . 6 ((1...𝑁) ∈ V → ( I ↾ (1...𝑁)) ∈ V)
6664, 65ax-mp 5 . . . . 5 ( I ↾ (1...𝑁)) ∈ V
6763, 66unex 7462 . . . 4 (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V
6867a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V)
69 simpr 485 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
70 f1oi 6651 . . . . . 6 ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)
7170a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁))
72 incom 4182 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))
7351nn0red 11950 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ)
7473ltp1d 11564 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1))
75 fzdisj 12929 . . . . . . 7 (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7674, 75syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7772, 76syl5eq 2873 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅)
7812a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
79 f1oun 6633 . . . . 5 (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
8069, 71, 77, 78, 79syl22anc 836 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
81 fzsplit1nn0 39235 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
8251, 55, 60, 81syl3anc 1365 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
83 uncom 4133 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))
8482, 83syl6reqr 2880 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)))
85 simpl3 1187 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴)
8685, 18sylib 219 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
8716, 86syl5eq 2873 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
88 f1oeq23 6606 . . . . 5 (((((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)) ∧ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
8984, 87, 88syl2anc 584 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
9080, 89mpbid 233 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴)
91 resundir 5867 . . . 4 ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁)))
92 dmres 5874 . . . . . . . 8 dom (𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎)
93 f1odm 6618 . . . . . . . . . . 11 (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9493adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9594ineq2d 4193 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))))
9695, 76eqtrd 2861 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅)
9792, 96syl5eq 2873 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅)
98 relres 5881 . . . . . . . 8 Rel (𝑎 ↾ (1...𝑁))
99 reldm0 5797 . . . . . . . 8 (Rel (𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅))
10098, 99ax-mp 5 . . . . . . 7 ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)
10197, 100sylibr 235 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅)
102 residm 5885 . . . . . . 7 (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))
103102a1i 11 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
104101, 103uneq12d 4144 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁))))
105 uncom 4133 . . . . . 6 (∅ ∪ ( I ↾ (1...𝑁))) = (( I ↾ (1...𝑁)) ∪ ∅)
106 un0 4348 . . . . . 6 (( I ↾ (1...𝑁)) ∪ ∅) = ( I ↾ (1...𝑁))
107105, 106eqtri 2849 . . . . 5 (∅ ∪ ( I ↾ (1...𝑁))) = ( I ↾ (1...𝑁))
108104, 107syl6eq 2877 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁)))
10991, 108syl5eq 2873 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
110 oveq2 7158 . . . . . 6 (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴)))
111110f1oeq2d 6610 . . . . 5 (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto𝐴𝑒:(1...(♯‘𝐴))–1-1-onto𝐴))
112111anbi1d 629 . . . 4 (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
113 f1oeq1 6603 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
114 reseq1 5846 . . . . . 6 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)))
115114eqeq1d 2828 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
116113, 115anbi12d 630 . . . 4 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
117112, 116rspc2ev 3639 . . 3 (((♯‘𝐴) ∈ (ℤ𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11862, 68, 90, 109, 117syl112anc 1368 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11950, 118exlimddv 1929 1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  wrex 3144  Vcvv 3500  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4295   class class class wbr 5063   I cid 5458  dom cdm 5554  cres 5556  Rel wrel 5559  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7150  cen 8500  Fincfn 8503  cc 10529  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  0cn0 11891  cz 11975  cuz 12237  ...cfz 12887  chash 13685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-hash 13686
This theorem is referenced by:  eldioph2  39243
  Copyright terms: Public domain W3C validator