MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2da Structured version   Visualization version   GIF version

Theorem dprd2da 20030
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2da (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2da
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2736 . 2 (0g𝐺) = (0g𝐺)
3 dprd2d.k . 2 𝐾 = (mrCls‘(SubGrp‘𝐺))
4 dprd2d.5 . . 3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
5 dprdgrp 19993 . . 3 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 resiun2 5992 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = 𝑖𝐼 (𝐴 ↾ {𝑖})
8 iunid 5041 . . . . . 6 𝑖𝐼 {𝑖} = 𝐼
98reseq2i 5968 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = (𝐴𝐼)
107, 9eqtr3i 2761 . . . 4 𝑖𝐼 (𝐴 ↾ {𝑖}) = (𝐴𝐼)
11 dprd2d.1 . . . . 5 (𝜑 → Rel 𝐴)
12 dprd2d.3 . . . . 5 (𝜑 → dom 𝐴𝐼)
13 relssres 6014 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝐼) → (𝐴𝐼) = 𝐴)
1411, 12, 13syl2anc 584 . . . 4 (𝜑 → (𝐴𝐼) = 𝐴)
1510, 14eqtrid 2783 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) = 𝐴)
16 ovex 7443 . . . . . 6 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
17 eqid 2736 . . . . . 6 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
1816, 17dmmpti 6687 . . . . 5 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
19 reldmdprd 19985 . . . . . . 7 Rel dom DProd
2019brrelex2i 5716 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
21 dmexg 7902 . . . . . 6 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
224, 20, 213syl 18 . . . . 5 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
2318, 22eqeltrrid 2840 . . . 4 (𝜑𝐼 ∈ V)
24 ressn 6279 . . . . . 6 (𝐴 ↾ {𝑖}) = ({𝑖} × (𝐴 “ {𝑖}))
25 vsnex 5409 . . . . . . 7 {𝑖} ∈ V
26 ovex 7443 . . . . . . . . 9 (𝑖𝑆𝑗) ∈ V
27 eqid 2736 . . . . . . . . 9 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
2826, 27dmmpti 6687 . . . . . . . 8 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
29 dprd2d.4 . . . . . . . . 9 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
3019brrelex2i 5716 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
31 dmexg 7902 . . . . . . . . 9 ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3229, 30, 313syl 18 . . . . . . . 8 ((𝜑𝑖𝐼) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3328, 32eqeltrrid 2840 . . . . . . 7 ((𝜑𝑖𝐼) → (𝐴 “ {𝑖}) ∈ V)
34 xpexg 7749 . . . . . . 7 (({𝑖} ∈ V ∧ (𝐴 “ {𝑖}) ∈ V) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3525, 33, 34sylancr 587 . . . . . 6 ((𝜑𝑖𝐼) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3624, 35eqeltrid 2839 . . . . 5 ((𝜑𝑖𝐼) → (𝐴 ↾ {𝑖}) ∈ V)
3736ralrimiva 3133 . . . 4 (𝜑 → ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
38 iunexg 7967 . . . 4 ((𝐼 ∈ V ∧ ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V) → 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
3923, 37, 38syl2anc 584 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
4015, 39eqeltrrd 2836 . 2 (𝜑𝐴 ∈ V)
41 dprd2d.2 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
42 sneq 4616 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
4342imaeq2d 6052 . . . . . . . . . 10 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
44 oveq1 7417 . . . . . . . . . 10 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
4543, 44mpteq12dv 5212 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
4645breq2d 5136 . . . . . . . 8 (𝑖 = (1st𝑥) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
4729ralrimiva 3133 . . . . . . . . 9 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
4847adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
4912adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝐴𝐼)
50 1stdm 8044 . . . . . . . . . 10 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
5111, 50sylan 580 . . . . . . . . 9 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
5249, 51sseldd 3964 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥) ∈ 𝐼)
5346, 48, 52rspcdva 3607 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
54533ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
5554adantr 480 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
56 ovex 7443 . . . . . . 7 ((1st𝑥)𝑆𝑗) ∈ V
57 eqid 2736 . . . . . . 7 (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
5856, 57dmmpti 6687 . . . . . 6 dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)})
5958a1i 11 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
60 1st2nd 8043 . . . . . . . . . . 11 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6111, 60sylan 580 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
62 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
6361, 62eqeltrrd 2836 . . . . . . . . 9 ((𝜑𝑥𝐴) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
64 df-br 5125 . . . . . . . . 9 ((1st𝑥)𝐴(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
6563, 64sylibr 234 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥)𝐴(2nd𝑥))
6611adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → Rel 𝐴)
67 elrelimasn 6078 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
6965, 68mpbird 257 . . . . . . 7 ((𝜑𝑥𝐴) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
70693ad2antr1 1189 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7170adantr 480 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7211adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → Rel 𝐴)
73 simpr2 1196 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
74 1st2nd 8043 . . . . . . . . . . 11 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7572, 73, 74syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7675, 73eqeltrrd 2836 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
77 df-br 5125 . . . . . . . . 9 ((1st𝑦)𝐴(2nd𝑦) ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
7876, 77sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦)𝐴(2nd𝑦))
79 elrelimasn 6078 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8072, 79syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8178, 80mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
8281adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
83 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (1st𝑥) = (1st𝑦))
8483sneqd 4618 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → {(1st𝑥)} = {(1st𝑦)})
8584imaeq2d 6052 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝐴 “ {(1st𝑥)}) = (𝐴 “ {(1st𝑦)}))
8682, 85eleqtrrd 2838 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
87 simplr3 1218 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝑥𝑦)
88 simpr1 1195 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
8972, 88, 60syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
9089, 75eqeq12d 2752 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩))
91 fvex 6894 . . . . . . . . . 10 (1st𝑥) ∈ V
92 fvex 6894 . . . . . . . . . 10 (2nd𝑥) ∈ V
9391, 92opth 5456 . . . . . . . . 9 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
9490, 93bitrdi 287 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
9594baibd 539 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥 = 𝑦 ↔ (2nd𝑥) = (2nd𝑦)))
9695necon3bid 2977 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥𝑦 ↔ (2nd𝑥) ≠ (2nd𝑦)))
9787, 96mpbid 232 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ≠ (2nd𝑦))
9855, 59, 71, 86, 97, 1dprdcntz 19996 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))))
99 df-ov 7413 . . . . . 6 ((1st𝑥)𝑆(2nd𝑥)) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩)
100 oveq2 7418 . . . . . . . 8 (𝑗 = (2nd𝑥) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑥)))
101100, 57, 56fvmpt3i 6996 . . . . . . 7 ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10270, 101syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10389fveq2d 6885 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
10499, 102, 1033eqtr4a 2797 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
105104adantr 480 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
10683oveq1d 7425 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((1st𝑥)𝑆𝑗) = ((1st𝑦)𝑆𝑗))
10785, 106mpteq12dv 5212 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
108107fveq1d 6883 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)))
109 df-ov 7413 . . . . . . . 8 ((1st𝑦)𝑆(2nd𝑦)) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩)
110 oveq2 7418 . . . . . . . . . 10 (𝑗 = (2nd𝑦) → ((1st𝑦)𝑆𝑗) = ((1st𝑦)𝑆(2nd𝑦)))
111 eqid 2736 . . . . . . . . . 10 (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))
112 ovex 7443 . . . . . . . . . 10 ((1st𝑦)𝑆𝑗) ∈ V
113110, 111, 112fvmpt3i 6996 . . . . . . . . 9 ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11481, 113syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11575fveq2d 6885 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
116109, 114, 1153eqtr4a 2797 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
117116adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
118108, 117eqtrd 2771 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
119118fveq2d 6885 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))) = ((Cntz‘𝐺)‘(𝑆𝑦)))
12098, 105, 1193sstr3d 4018 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
12111, 41, 12, 29, 4, 3dprd2dlem2 20028 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12245oveq2d 7426 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
123122, 17, 16fvmpt3i 6996 . . . . . . . 8 ((1st𝑥) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12452, 123syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
125121, 124sseqtrrd 4001 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1261253ad2antr1 1189 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
127126adantr 480 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1284ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
12918a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
130523ad2antr1 1189 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑥) ∈ 𝐼)
131130adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ∈ 𝐼)
13212adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom 𝐴𝐼)
133 1stdm 8044 . . . . . . . . 9 ((Rel 𝐴𝑦𝐴) → (1st𝑦) ∈ dom 𝐴)
13472, 73, 133syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ dom 𝐴)
135132, 134sseldd 3964 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ 𝐼)
136135adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑦) ∈ 𝐼)
137 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ≠ (1st𝑦))
138128, 129, 131, 136, 137, 1dprdcntz 19996 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))))
139 sneq 4616 . . . . . . . . . . . . 13 (𝑖 = (1st𝑦) → {𝑖} = {(1st𝑦)})
140139imaeq2d 6052 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑦)}))
141 oveq1 7417 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝑖𝑆𝑗) = ((1st𝑦)𝑆𝑗))
142140, 141mpteq12dv 5212 . . . . . . . . . . 11 (𝑖 = (1st𝑦) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
143142oveq2d 7426 . . . . . . . . . 10 (𝑖 = (1st𝑦) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
144143, 17, 16fvmpt3i 6996 . . . . . . . . 9 ((1st𝑦) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
145135, 144syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
146145fveq2d 6885 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) = ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))))
147 eqid 2736 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
148147dprdssv 20004 . . . . . . . 8 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺)
149142breq2d 5136 . . . . . . . . . . 11 (𝑖 = (1st𝑦) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
15047adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
151149, 150, 135rspcdva 3607 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
152112, 111dmmpti 6687 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)})
153152a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)}))
154151, 153, 81dprdub 20013 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
155116, 154eqsstrrd 3999 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
156147, 1cntz2ss 19323 . . . . . . . 8 (((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
157148, 155, 156sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
158146, 157eqsstrd 3998 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
159158adantr 480 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
160138, 159sstrd 3974 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
161127, 160sstrd 3974 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
162120, 161pm2.61dane 3020 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
1636adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐺 ∈ Grp)
164147subgacs 19149 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
165 acsmre 17669 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
166163, 164, 1653syl 18 . . . . 5 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16714adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = 𝐴)
168 undif2 4457 . . . . . . . . . . . . . . . . . 18 ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})) = ({(1st𝑥)} ∪ 𝐼)
16952snssd 4790 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → {(1st𝑥)} ⊆ 𝐼)
170 ssequn1 4166 . . . . . . . . . . . . . . . . . . 19 ({(1st𝑥)} ⊆ 𝐼 ↔ ({(1st𝑥)} ∪ 𝐼) = 𝐼)
171169, 170sylib 218 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∪ 𝐼) = 𝐼)
172168, 171eqtr2id 2784 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐼 = ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})))
173172reseq2d 5971 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
174167, 173eqtr3d 2773 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐴 = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
175 resundi 5985 . . . . . . . . . . . . . . 15 (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))) = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
176174, 175eqtrdi 2787 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
177176difeq1d 4105 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}))
178 difundir 4271 . . . . . . . . . . . . 13 (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
179177, 178eqtrdi 2787 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})))
180 neirr 2942 . . . . . . . . . . . . . . . . 17 ¬ (1st𝑥) ≠ (1st𝑥)
18161eleq1d 2820 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
182 df-br 5125 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
18392brresi 5980 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ((1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}) ∧ (1st𝑥)𝐴(2nd𝑥)))
184183simplbi 497 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}))
185 eldifsni 4771 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}) → (1st𝑥) ≠ (1st𝑥))
186184, 185syl 17 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ≠ (1st𝑥))
187182, 186sylbir 235 . . . . . . . . . . . . . . . . . 18 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥))
188181, 187biimtrdi 253 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥)))
189180, 188mtoi 199 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
190 disjsn 4692 . . . . . . . . . . . . . . . 16 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
191189, 190sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅)
192 disj3 4434 . . . . . . . . . . . . . . 15 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
193191, 192sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
194193eqcomd 2742 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}) = (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
195194uneq2d 4148 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
196179, 195eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
197196imaeq2d 6052 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
198 imaundi 6143 . . . . . . . . . 10 (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
199197, 198eqtrdi 2787 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
200199unieqd 4901 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
201 uniun 4911 . . . . . . . 8 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
202200, 201eqtrdi 2787 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
203 imassrn 6063 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran 𝑆
20441frnd 6719 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
205204adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ (SubGrp‘𝐺))
206 mresspw 17609 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
207166, 206syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
208205, 207sstrd 3974 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
209203, 208sstrid 3975 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
210 sspwuni 5081 . . . . . . . . . 10 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
211209, 210sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
212166, 3, 211mrcssidd 17642 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
213 imassrn 6063 . . . . . . . . . . 11 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ ran 𝑆
214213, 208sstrid 3975 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺))
215 sspwuni 5081 . . . . . . . . . 10 ((𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
216214, 215sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
217166, 3, 216mrcssidd 17642 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
218 unss12 4168 . . . . . . . 8 (( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
219212, 217, 218syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
220202, 219eqsstrd 3998 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
2213mrccl 17628 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
222166, 211, 221syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
2233mrccl 17628 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
224166, 216, 223syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
225 eqid 2736 . . . . . . . 8 (LSSum‘𝐺) = (LSSum‘𝐺)
226225lsmunss 19645 . . . . . . 7 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
227222, 224, 226syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
228220, 227sstrd 3974 . . . . 5 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
229 difss 4116 . . . . . . . . . . . . 13 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ (𝐴 ↾ {(1st𝑥)})
230 ressn 6279 . . . . . . . . . . . . 13 (𝐴 ↾ {(1st𝑥)}) = ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
231229, 230sseqtri 4012 . . . . . . . . . . . 12 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
232 imass2 6094 . . . . . . . . . . . 12 (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))))
233231, 232ax-mp 5 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
234 ovex 7443 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝑆𝑖) ∈ V
235 oveq2 7418 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆𝑖))
23657, 235elrnmpt1s 5944 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝐴 “ {(1st𝑥)}) ∧ ((1st𝑥)𝑆𝑖) ∈ V) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
237234, 236mpan2 691 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝐴 “ {(1st𝑥)}) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
238237rgen 3054 . . . . . . . . . . . . . 14 𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
239238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
240 oveq1 7417 . . . . . . . . . . . . . . . 16 (𝑦 = (1st𝑥) → (𝑦𝑆𝑖) = ((1st𝑥)𝑆𝑖))
241240eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑦 = (1st𝑥) → ((𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
242241ralbidv 3164 . . . . . . . . . . . . . 14 (𝑦 = (1st𝑥) → (∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
24391, 242ralsn 4662 . . . . . . . . . . . . 13 (∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
244239, 243sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
24541adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑆:𝐴⟶(SubGrp‘𝐺))
246245ffund 6715 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun 𝑆)
247 resss 5993 . . . . . . . . . . . . . . 15 (𝐴 ↾ {(1st𝑥)}) ⊆ 𝐴
248230, 247eqsstrri 4011 . . . . . . . . . . . . . 14 ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ 𝐴
249245fdmd 6721 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐴)
250248, 249sseqtrrid 4007 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆)
251 funimassov 7589 . . . . . . . . . . . . 13 ((Fun 𝑆 ∧ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
252246, 250, 251syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
253244, 252mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
254233, 253sstrid 3975 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
255254unissd 4898 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
256 df-ov 7413 . . . . . . . . . . . . . 14 ((1st𝑥)𝑆𝑗) = (𝑆‘⟨(1st𝑥), 𝑗⟩)
25741ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → 𝑆:𝐴⟶(SubGrp‘𝐺))
258 elrelimasn 6078 . . . . . . . . . . . . . . . . . 18 (Rel 𝐴 → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
25966, 258syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
260259biimpa 476 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (1st𝑥)𝐴𝑗)
261 df-br 5125 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝐴𝑗 ↔ ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
262260, 261sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
263257, 262ffvelcdmd 7080 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (𝑆‘⟨(1st𝑥), 𝑗⟩) ∈ (SubGrp‘𝐺))
264256, 263eqeltrid 2839 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ((1st𝑥)𝑆𝑗) ∈ (SubGrp‘𝐺))
265264fmpttd 7110 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)):(𝐴 “ {(1st𝑥)})⟶(SubGrp‘𝐺))
266265frnd 6719 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (SubGrp‘𝐺))
267266, 207sstrd 3974 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺))
268 sspwuni 5081 . . . . . . . . . 10 (ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺) ↔ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
269267, 268sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
270166, 3, 255, 269mrcssd 17641 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2713dprdspan 20015 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
27253, 271syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
273270, 272sseqtrrd 4001 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
27416, 17fnmpti 6686 . . . . . . . . . . . . 13 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼
275 fnressn 7153 . . . . . . . . . . . . 13 (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼 ∧ (1st𝑥) ∈ 𝐼) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
276274, 52, 275sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
277124opeq2d 4861 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩ = ⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩)
278277sneqd 4618 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩} = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
279276, 278eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
280279oveq2d 7426 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}))
281 dprdsubg 20012 . . . . . . . . . . . . 13 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
28253, 281syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
283 dprdsn 20024 . . . . . . . . . . . 12 (((1st𝑥) ∈ 𝐼 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
28452, 282, 283syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
285284simprd 495 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
286280, 285eqtrd 2771 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2874adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
28818a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
289 difss 4116 . . . . . . . . . . 11 (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼
290289a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼)
291 disjdif 4452 . . . . . . . . . . 11 ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅
292291a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅)
293287, 288, 169, 290, 292, 1dprdcntz2 20026 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
294286, 293eqsstrrd 3999 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
29529adantlr 715 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
29666, 245, 49, 295, 287, 3, 290dprd2dlem1 20029 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
297 resmpt 6029 . . . . . . . . . . . 12 ((𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
298289, 297ax-mp 5 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
299298oveq2i 7421 . . . . . . . . . 10 (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
300296, 299eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
301300fveq2d 6885 . . . . . . . 8 ((𝜑𝑥𝐴) → ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
302294, 301sseqtrrd 4001 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
303273, 302sstrd 3974 . . . . . 6 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
304225, 1lsmsubg 19640 . . . . . 6 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
305222, 224, 303, 304syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
3063mrcsscl 17637 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∧ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
307166, 228, 305, 306syl3anc 1373 . . . 4 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
308 sslin 4223 . . . 4 ((𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
309307, 308syl 17 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
31041ffvelcdmda 7079 . . . 4 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
311225lsmlub 19650 . . . . . . . . . 10 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
312222, 310, 282, 311syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
313273, 121, 312mpbi2and 712 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
314313, 124sseqtrrd 4001 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
315287, 288, 290dprdres 20016 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
316315simpld 494 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
3173dprdspan 20015 . . . . . . . . . . 11 (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
318316, 317syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
319 df-ima 5672 . . . . . . . . . . . 12 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
320319unieqi 4900 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
321320fveq2i 6884 . . . . . . . . . 10 (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
322318, 321eqtr4di 2789 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
323300, 322eqtrd 2771 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
324 eqimss 4022 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
325323, 324syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
326 ss2in 4225 . . . . . . 7 ((((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
327314, 325, 326syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
328287, 288, 52, 2, 3dprddisj 19997 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) = {(0g𝐺)})
329327, 328sseqtrd 4000 . . . . 5 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ {(0g𝐺)})
330225lsmub2 19644 . . . . . . . . 9 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺)) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
331222, 310, 330syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3322subg0cl 19122 . . . . . . . . 9 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
333310, 332syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
334331, 333sseldd 3964 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3352subg0cl 19122 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
336224, 335syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
337334, 336elind 4180 . . . . . 6 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
338337snssd 4790 . . . . 5 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
339329, 338eqssd 3981 . . . 4 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = {(0g𝐺)})
340 incom 4189 . . . . 5 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
34169, 101syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
34261fveq2d 6885 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
34399, 341, 3423eqtr4a 2797 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
344 eqimss2 4023 . . . . . . . . 9 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
345343, 344syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
346 eldifsn 4767 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥))
34711ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → Rel 𝐴)
348 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐴 ↾ {(1st𝑥)}))
349247, 348sselid 3961 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝐴)
350347, 349, 74syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
351350fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
352351, 109eqtr4di 2789 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑦)𝑆(2nd𝑦)))
353350, 348eqeltrrd 2836 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}))
354 fvex 6894 . . . . . . . . . . . . . . . . . . . . . 22 (2nd𝑦) ∈ V
355354opelresi 5979 . . . . . . . . . . . . . . . . . . . . 21 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) ↔ ((1st𝑦) ∈ {(1st𝑥)} ∧ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴))
356355simplbi 497 . . . . . . . . . . . . . . . . . . . 20 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) → (1st𝑦) ∈ {(1st𝑥)})
357353, 356syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) ∈ {(1st𝑥)})
358 elsni 4623 . . . . . . . . . . . . . . . . . . 19 ((1st𝑦) ∈ {(1st𝑥)} → (1st𝑦) = (1st𝑥))
359357, 358syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) = (1st𝑥))
360359oveq1d 7425 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑦)𝑆(2nd𝑦)) = ((1st𝑥)𝑆(2nd𝑦)))
361352, 360eqtrd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑥)𝑆(2nd𝑦)))
362348, 230eleqtrdi 2845 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
363 xp2nd 8026 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
364362, 363syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
365 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝑥)
36661adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
367350, 366eqeq12d 2752 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩))
368 fvex 6894 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st𝑦) ∈ V
369368, 354opth 5456 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ ((1st𝑦) = (1st𝑥) ∧ (2nd𝑦) = (2nd𝑥)))
370369baib 535 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑦) = (1st𝑥) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
371359, 370syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
372367, 371bitrd 279 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ (2nd𝑦) = (2nd𝑥)))
373372necon3bid 2977 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦𝑥 ↔ (2nd𝑦) ≠ (2nd𝑥)))
374365, 373mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ≠ (2nd𝑥))
375 eldifsn 4767 . . . . . . . . . . . . . . . . . 18 ((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↔ ((2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}) ∧ (2nd𝑦) ≠ (2nd𝑥)))
376364, 374, 375sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
377 ovex 7443 . . . . . . . . . . . . . . . . 17 ((1st𝑥)𝑆(2nd𝑦)) ∈ V
378 difss 4116 . . . . . . . . . . . . . . . . . . 19 ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)})
379 resmpt 6029 . . . . . . . . . . . . . . . . . . 19 (((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
380378, 379ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
381 oveq2 7418 . . . . . . . . . . . . . . . . . 18 (𝑗 = (2nd𝑦) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑦)))
382380, 381elrnmpt1s 5944 . . . . . . . . . . . . . . . . 17 (((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ∧ ((1st𝑥)𝑆(2nd𝑦)) ∈ V) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
383376, 377, 382sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
384361, 383eqeltrd 2835 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
385 df-ima 5672 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
386384, 385eleqtrrdi 2846 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
387386ex 412 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
388346, 387biimtrid 242 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
389388ralrimiv 3132 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
390231, 250sstrid 3975 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆)
391 funimass4 6948 . . . . . . . . . . . 12 ((Fun 𝑆 ∧ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
392246, 390, 391syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
393389, 392mpbird 257 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
394393unissd 4898 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
395 imassrn 6063 . . . . . . . . . . 11 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
396395, 267sstrid 3975 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺))
397 sspwuni 5081 . . . . . . . . . 10 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
398396, 397sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
399166, 3, 394, 398mrcssd 17641 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
400 ss2in 4225 . . . . . . . 8 (((𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
401345, 399, 400syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
40258a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
40353, 402, 69, 2, 3dprddisj 19997 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) = {(0g𝐺)})
404401, 403sseqtrd 4000 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ {(0g𝐺)})
4052subg0cl 19122 . . . . . . . . 9 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
406222, 405syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
407333, 406elind 4180 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
408407snssd 4790 . . . . . 6 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
409404, 408eqssd 3981 . . . . 5 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) = {(0g𝐺)})
410340, 409eqtrid 2783 . . . 4 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = {(0g𝐺)})
411225, 222, 310, 224, 2, 339, 410lsmdisj2 19668 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) = {(0g𝐺)})
412309, 411sseqtrd 4000 . 2 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
4131, 2, 3, 6, 40, 41, 162, 412dmdprdd 19987 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606  cop 4612   cuni 4888   ciun 4972   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  0gc0g 17458  Moorecmre 17599  mrClscmrc 17600  ACScacs 17602  Grpcgrp 18921  SubGrpcsubg 19108  Cntzccntz 19303  LSSumclsm 19620   DProd cdprd 19981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-dprd 19983
This theorem is referenced by:  dprd2db  20031  dprd2d2  20032
  Copyright terms: Public domain W3C validator