MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2da Structured version   Visualization version   GIF version

Theorem dprd2da 19654
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2da (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2da
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . 2 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2739 . 2 (0g𝐺) = (0g𝐺)
3 dprd2d.k . 2 𝐾 = (mrCls‘(SubGrp‘𝐺))
4 dprd2d.5 . . 3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
5 dprdgrp 19617 . . 3 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 resiun2 5915 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = 𝑖𝐼 (𝐴 ↾ {𝑖})
8 iunid 4991 . . . . . 6 𝑖𝐼 {𝑖} = 𝐼
98reseq2i 5891 . . . . 5 (𝐴 𝑖𝐼 {𝑖}) = (𝐴𝐼)
107, 9eqtr3i 2769 . . . 4 𝑖𝐼 (𝐴 ↾ {𝑖}) = (𝐴𝐼)
11 dprd2d.1 . . . . 5 (𝜑 → Rel 𝐴)
12 dprd2d.3 . . . . 5 (𝜑 → dom 𝐴𝐼)
13 relssres 5935 . . . . 5 ((Rel 𝐴 ∧ dom 𝐴𝐼) → (𝐴𝐼) = 𝐴)
1411, 12, 13syl2anc 584 . . . 4 (𝜑 → (𝐴𝐼) = 𝐴)
1510, 14eqtrid 2791 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) = 𝐴)
16 ovex 7317 . . . . . 6 (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) ∈ V
17 eqid 2739 . . . . . 6 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
1816, 17dmmpti 6586 . . . . 5 dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼
19 reldmdprd 19609 . . . . . . 7 Rel dom DProd
2019brrelex2i 5645 . . . . . 6 (𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) → (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
21 dmexg 7759 . . . . . 6 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
224, 20, 213syl 18 . . . . 5 (𝜑 → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ∈ V)
2318, 22eqeltrrid 2845 . . . 4 (𝜑𝐼 ∈ V)
24 ressn 6192 . . . . . 6 (𝐴 ↾ {𝑖}) = ({𝑖} × (𝐴 “ {𝑖}))
25 snex 5355 . . . . . . 7 {𝑖} ∈ V
26 ovex 7317 . . . . . . . . 9 (𝑖𝑆𝑗) ∈ V
27 eqid 2739 . . . . . . . . 9 (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))
2826, 27dmmpti 6586 . . . . . . . 8 dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝐴 “ {𝑖})
29 dprd2d.4 . . . . . . . . 9 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
3019brrelex2i 5645 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
31 dmexg 7759 . . . . . . . . 9 ((𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3229, 30, 313syl 18 . . . . . . . 8 ((𝜑𝑖𝐼) → dom (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ∈ V)
3328, 32eqeltrrid 2845 . . . . . . 7 ((𝜑𝑖𝐼) → (𝐴 “ {𝑖}) ∈ V)
34 xpexg 7609 . . . . . . 7 (({𝑖} ∈ V ∧ (𝐴 “ {𝑖}) ∈ V) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3525, 33, 34sylancr 587 . . . . . 6 ((𝜑𝑖𝐼) → ({𝑖} × (𝐴 “ {𝑖})) ∈ V)
3624, 35eqeltrid 2844 . . . . 5 ((𝜑𝑖𝐼) → (𝐴 ↾ {𝑖}) ∈ V)
3736ralrimiva 3104 . . . 4 (𝜑 → ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
38 iunexg 7815 . . . 4 ((𝐼 ∈ V ∧ ∀𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V) → 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
3923, 37, 38syl2anc 584 . . 3 (𝜑 𝑖𝐼 (𝐴 ↾ {𝑖}) ∈ V)
4015, 39eqeltrrd 2841 . 2 (𝜑𝐴 ∈ V)
41 dprd2d.2 . 2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
42 sneq 4572 . . . . . . . . . . 11 (𝑖 = (1st𝑥) → {𝑖} = {(1st𝑥)})
4342imaeq2d 5972 . . . . . . . . . 10 (𝑖 = (1st𝑥) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑥)}))
44 oveq1 7291 . . . . . . . . . 10 (𝑖 = (1st𝑥) → (𝑖𝑆𝑗) = ((1st𝑥)𝑆𝑗))
4543, 44mpteq12dv 5166 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
4645breq2d 5087 . . . . . . . 8 (𝑖 = (1st𝑥) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
4729ralrimiva 3104 . . . . . . . . 9 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
4847adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
4912adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → dom 𝐴𝐼)
50 1stdm 7890 . . . . . . . . . 10 ((Rel 𝐴𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
5111, 50sylan 580 . . . . . . . . 9 ((𝜑𝑥𝐴) → (1st𝑥) ∈ dom 𝐴)
5249, 51sseldd 3923 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥) ∈ 𝐼)
5346, 48, 52rspcdva 3563 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
54533ad2antr1 1187 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
5554adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
56 ovex 7317 . . . . . . 7 ((1st𝑥)𝑆𝑗) ∈ V
57 eqid 2739 . . . . . . 7 (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
5856, 57dmmpti 6586 . . . . . 6 dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)})
5958a1i 11 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
60 1st2nd 7889 . . . . . . . . . . 11 ((Rel 𝐴𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
6111, 60sylan 580 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
62 simpr 485 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
6361, 62eqeltrrd 2841 . . . . . . . . 9 ((𝜑𝑥𝐴) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
64 df-br 5076 . . . . . . . . 9 ((1st𝑥)𝐴(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ 𝐴)
6563, 64sylibr 233 . . . . . . . 8 ((𝜑𝑥𝐴) → (1st𝑥)𝐴(2nd𝑥))
6611adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → Rel 𝐴)
67 elrelimasn 5996 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
6866, 67syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴(2nd𝑥)))
6965, 68mpbird 256 . . . . . . 7 ((𝜑𝑥𝐴) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
70693ad2antr1 1187 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7170adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}))
7211adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → Rel 𝐴)
73 simpr2 1194 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦𝐴)
74 1st2nd 7889 . . . . . . . . . . 11 ((Rel 𝐴𝑦𝐴) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7572, 73, 74syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
7675, 73eqeltrrd 2841 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
77 df-br 5076 . . . . . . . . 9 ((1st𝑦)𝐴(2nd𝑦) ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴)
7876, 77sylibr 233 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦)𝐴(2nd𝑦))
79 elrelimasn 5996 . . . . . . . . 9 (Rel 𝐴 → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8072, 79syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) ↔ (1st𝑦)𝐴(2nd𝑦)))
8178, 80mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
8281adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}))
83 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (1st𝑥) = (1st𝑦))
8483sneqd 4574 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → {(1st𝑥)} = {(1st𝑦)})
8584imaeq2d 5972 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝐴 “ {(1st𝑥)}) = (𝐴 “ {(1st𝑦)}))
8682, 85eleqtrrd 2843 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
87 simplr3 1216 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → 𝑥𝑦)
88 simpr1 1193 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥𝐴)
8972, 88, 60syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
9089, 75eqeq12d 2755 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩))
91 fvex 6796 . . . . . . . . . 10 (1st𝑥) ∈ V
92 fvex 6796 . . . . . . . . . 10 (2nd𝑥) ∈ V
9391, 92opth 5392 . . . . . . . . 9 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
9490, 93bitrdi 287 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑥 = 𝑦 ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦))))
9594baibd 540 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥 = 𝑦 ↔ (2nd𝑥) = (2nd𝑦)))
9695necon3bid 2989 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑥𝑦 ↔ (2nd𝑥) ≠ (2nd𝑦)))
9787, 96mpbid 231 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (2nd𝑥) ≠ (2nd𝑦))
9855, 59, 71, 86, 97, 1dprdcntz 19620 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))))
99 df-ov 7287 . . . . . 6 ((1st𝑥)𝑆(2nd𝑥)) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩)
100 oveq2 7292 . . . . . . . 8 (𝑗 = (2nd𝑥) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑥)))
101100, 57, 56fvmpt3i 6889 . . . . . . 7 ((2nd𝑥) ∈ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10270, 101syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
10389fveq2d 6787 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
10499, 102, 1033eqtr4a 2805 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
105104adantr 481 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
10683oveq1d 7299 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((1st𝑥)𝑆𝑗) = ((1st𝑦)𝑆𝑗))
10785, 106mpteq12dv 5166 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
108107fveq1d 6785 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)))
109 df-ov 7287 . . . . . . . 8 ((1st𝑦)𝑆(2nd𝑦)) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩)
110 oveq2 7292 . . . . . . . . . 10 (𝑗 = (2nd𝑦) → ((1st𝑦)𝑆𝑗) = ((1st𝑦)𝑆(2nd𝑦)))
111 eqid 2739 . . . . . . . . . 10 (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))
112 ovex 7317 . . . . . . . . . 10 ((1st𝑦)𝑆𝑗) ∈ V
113110, 111, 112fvmpt3i 6889 . . . . . . . . 9 ((2nd𝑦) ∈ (𝐴 “ {(1st𝑦)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11481, 113syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = ((1st𝑦)𝑆(2nd𝑦)))
11575fveq2d 6787 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
116109, 114, 1153eqtr4a 2805 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
117116adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
118108, 117eqtrd 2779 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦)) = (𝑆𝑦))
119118fveq2d 6787 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → ((Cntz‘𝐺)‘((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑦))) = ((Cntz‘𝐺)‘(𝑆𝑦)))
12098, 105, 1193sstr3d 3968 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) = (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
12111, 41, 12, 29, 4, 3dprd2dlem2 19652 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12245oveq2d 7300 . . . . . . . . 9 (𝑖 = (1st𝑥) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
123122, 17, 16fvmpt3i 6889 . . . . . . . 8 ((1st𝑥) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
12452, 123syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
125121, 124sseqtrrd 3963 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1261253ad2antr1 1187 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
127126adantr 481 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
1284ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
12918a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
130523ad2antr1 1187 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑥) ∈ 𝐼)
131130adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ∈ 𝐼)
13212adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom 𝐴𝐼)
133 1stdm 7890 . . . . . . . . 9 ((Rel 𝐴𝑦𝐴) → (1st𝑦) ∈ dom 𝐴)
13472, 73, 133syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ dom 𝐴)
135132, 134sseldd 3923 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (1st𝑦) ∈ 𝐼)
136135adantr 481 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑦) ∈ 𝐼)
137 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (1st𝑥) ≠ (1st𝑦))
138128, 129, 131, 136, 137, 1dprdcntz 19620 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))))
139 sneq 4572 . . . . . . . . . . . . 13 (𝑖 = (1st𝑦) → {𝑖} = {(1st𝑦)})
140139imaeq2d 5972 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝐴 “ {𝑖}) = (𝐴 “ {(1st𝑦)}))
141 oveq1 7291 . . . . . . . . . . . 12 (𝑖 = (1st𝑦) → (𝑖𝑆𝑗) = ((1st𝑦)𝑆𝑗))
142140, 141mpteq12dv 5166 . . . . . . . . . . 11 (𝑖 = (1st𝑦) → (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) = (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
143142oveq2d 7300 . . . . . . . . . 10 (𝑖 = (1st𝑦) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
144143, 17, 16fvmpt3i 6889 . . . . . . . . 9 ((1st𝑦) ∈ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
145135, 144syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦)) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
146145fveq2d 6787 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) = ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))))
147 eqid 2739 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
148147dprdssv 19628 . . . . . . . 8 (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺)
149142breq2d 5087 . . . . . . . . . . 11 (𝑖 = (1st𝑦) → (𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
15047adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ∀𝑖𝐼 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
151149, 150, 135rspcdva 3563 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))
152112, 111dmmpti 6586 . . . . . . . . . . 11 dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)})
153152a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → dom (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)) = (𝐴 “ {(1st𝑦)}))
154151, 153, 81dprdub 19637 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))‘(2nd𝑦)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
155116, 154eqsstrrd 3961 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))))
156147, 1cntz2ss 18948 . . . . . . . 8 (((𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗))) ⊆ (Base‘𝐺) ∧ (𝑆𝑦) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
157148, 155, 156sylancr 587 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘(𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑦)}) ↦ ((1st𝑦)𝑆𝑗)))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
158146, 157eqsstrd 3960 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
159158adantr 481 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((Cntz‘𝐺)‘((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑦))) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
160138, 159sstrd 3932 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
161127, 160sstrd 3932 . . 3 (((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) ∧ (1st𝑥) ≠ (1st𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
162120, 161pm2.61dane 3033 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑥𝑦)) → (𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)))
1636adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐺 ∈ Grp)
164147subgacs 18798 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
165 acsmre 17370 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
166163, 164, 1653syl 18 . . . . 5 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
16714adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = 𝐴)
168 undif2 4411 . . . . . . . . . . . . . . . . . 18 ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})) = ({(1st𝑥)} ∪ 𝐼)
16952snssd 4743 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → {(1st𝑥)} ⊆ 𝐼)
170 ssequn1 4115 . . . . . . . . . . . . . . . . . . 19 ({(1st𝑥)} ⊆ 𝐼 ↔ ({(1st𝑥)} ∪ 𝐼) = 𝐼)
171169, 170sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∪ 𝐼) = 𝐼)
172168, 171eqtr2id 2792 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐼 = ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)})))
173172reseq2d 5894 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐴𝐼) = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
174167, 173eqtr3d 2781 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐴 = (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))))
175 resundi 5908 . . . . . . . . . . . . . . 15 (𝐴 ↾ ({(1st𝑥)} ∪ (𝐼 ∖ {(1st𝑥)}))) = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
176174, 175eqtrdi 2795 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
177176difeq1d 4057 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}))
178 difundir 4215 . . . . . . . . . . . . 13 (((𝐴 ↾ {(1st𝑥)}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
179177, 178eqtrdi 2795 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})))
180 neirr 2953 . . . . . . . . . . . . . . . . 17 ¬ (1st𝑥) ≠ (1st𝑥)
18161eleq1d 2824 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
182 df-br 5076 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
18392brresi 5903 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) ↔ ((1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}) ∧ (1st𝑥)𝐴(2nd𝑥)))
184183simplbi 498 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}))
185 eldifsni 4724 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥) ∈ (𝐼 ∖ {(1st𝑥)}) → (1st𝑥) ≠ (1st𝑥))
186184, 185syl 17 . . . . . . . . . . . . . . . . . . 19 ((1st𝑥)(𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))(2nd𝑥) → (1st𝑥) ≠ (1st𝑥))
187182, 186sylbir 234 . . . . . . . . . . . . . . . . . 18 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥))
188181, 187syl6bi 252 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) → (1st𝑥) ≠ (1st𝑥)))
189180, 188mtoi 198 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
190 disjsn 4648 . . . . . . . . . . . . . . . 16 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
191189, 190sylibr 233 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅)
192 disj3 4388 . . . . . . . . . . . . . . 15 (((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∩ {𝑥}) = ∅ ↔ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
193191, 192sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) = ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}))
194193eqcomd 2745 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥}) = (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))
195194uneq2d 4098 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ ((𝐴 ↾ (𝐼 ∖ {(1st𝑥)})) ∖ {𝑥})) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
196179, 195eqtrd 2779 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) = (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
197196imaeq2d 5972 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
198 imaundi 6058 . . . . . . . . . 10 (𝑆 “ (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ∪ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
199197, 198eqtrdi 2795 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
200199unieqd 4854 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
201 uniun 4865 . . . . . . . 8 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))
202200, 201eqtrdi 2795 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) = ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
203 imassrn 5983 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran 𝑆
20441frnd 6617 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
205204adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ (SubGrp‘𝐺))
206 mresspw 17310 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
207166, 206syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
208205, 207sstrd 3932 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
209203, 208sstrid 3933 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
210 sspwuni 5030 . . . . . . . . . 10 ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
211209, 210sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺))
212166, 3, 211mrcssidd 17343 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
213 imassrn 5983 . . . . . . . . . . 11 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ ran 𝑆
214213, 208sstrid 3933 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺))
215 sspwuni 5030 . . . . . . . . . 10 ((𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
216214, 215sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺))
217166, 3, 216mrcssidd 17343 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
218 unss12 4117 . . . . . . . 8 (( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
219212, 217, 218syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ( (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ∪ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
220202, 219eqsstrd 3960 . . . . . 6 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
2213mrccl 17329 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
222166, 211, 221syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
2233mrccl 17329 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
224166, 216, 223syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺))
225 eqid 2739 . . . . . . . 8 (LSSum‘𝐺) = (LSSum‘𝐺)
226225lsmunss 19273 . . . . . . 7 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺)) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
227222, 224, 226syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∪ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
228220, 227sstrd 3932 . . . . 5 ((𝜑𝑥𝐴) → (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
229 difss 4067 . . . . . . . . . . . . 13 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ (𝐴 ↾ {(1st𝑥)})
230 ressn 6192 . . . . . . . . . . . . 13 (𝐴 ↾ {(1st𝑥)}) = ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
231229, 230sseqtri 3958 . . . . . . . . . . . 12 ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))
232 imass2 6013 . . . . . . . . . . . 12 (((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))))
233231, 232ax-mp 5 . . . . . . . . . . 11 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
234 ovex 7317 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝑆𝑖) ∈ V
235 oveq2 7292 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑖 → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆𝑖))
23657, 235elrnmpt1s 5869 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (𝐴 “ {(1st𝑥)}) ∧ ((1st𝑥)𝑆𝑖) ∈ V) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
237234, 236mpan2 688 . . . . . . . . . . . . . . 15 (𝑖 ∈ (𝐴 “ {(1st𝑥)}) → ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
238237rgen 3075 . . . . . . . . . . . . . 14 𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
239238a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
240 oveq1 7291 . . . . . . . . . . . . . . . 16 (𝑦 = (1st𝑥) → (𝑦𝑆𝑖) = ((1st𝑥)𝑆𝑖))
241240eleq1d 2824 . . . . . . . . . . . . . . 15 (𝑦 = (1st𝑥) → ((𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
242241ralbidv 3113 . . . . . . . . . . . . . 14 (𝑦 = (1st𝑥) → (∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
24391, 242ralsn 4618 . . . . . . . . . . . . 13 (∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑖 ∈ (𝐴 “ {(1st𝑥)})((1st𝑥)𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
244239, 243sylibr 233 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
24541adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑆:𝐴⟶(SubGrp‘𝐺))
246245ffund 6613 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → Fun 𝑆)
247 resss 5919 . . . . . . . . . . . . . . 15 (𝐴 ↾ {(1st𝑥)}) ⊆ 𝐴
248230, 247eqsstrri 3957 . . . . . . . . . . . . . 14 ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ 𝐴
249245fdmd 6620 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → dom 𝑆 = 𝐴)
250248, 249sseqtrrid 3975 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆)
251 funimassov 7458 . . . . . . . . . . . . 13 ((Fun 𝑆 ∧ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) ⊆ dom 𝑆) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
252246, 250, 251syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↔ ∀𝑦 ∈ {(1st𝑥)}∀𝑖 ∈ (𝐴 “ {(1st𝑥)})(𝑦𝑆𝑖) ∈ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
253244, 252mpbird 256 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑆 “ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)}))) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
254233, 253sstrid 3933 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
255254unissd 4850 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
256 df-ov 7287 . . . . . . . . . . . . . 14 ((1st𝑥)𝑆𝑗) = (𝑆‘⟨(1st𝑥), 𝑗⟩)
25741ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → 𝑆:𝐴⟶(SubGrp‘𝐺))
258 elrelimasn 5996 . . . . . . . . . . . . . . . . . 18 (Rel 𝐴 → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
25966, 258syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↔ (1st𝑥)𝐴𝑗))
260259biimpa 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (1st𝑥)𝐴𝑗)
261 df-br 5076 . . . . . . . . . . . . . . . 16 ((1st𝑥)𝐴𝑗 ↔ ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
262260, 261sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ⟨(1st𝑥), 𝑗⟩ ∈ 𝐴)
263257, 262ffvelrnd 6971 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → (𝑆‘⟨(1st𝑥), 𝑗⟩) ∈ (SubGrp‘𝐺))
264256, 263eqeltrid 2844 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (𝐴 “ {(1st𝑥)})) → ((1st𝑥)𝑆𝑗) ∈ (SubGrp‘𝐺))
265264fmpttd 6998 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)):(𝐴 “ {(1st𝑥)})⟶(SubGrp‘𝐺))
266265frnd 6617 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (SubGrp‘𝐺))
267266, 207sstrd 3932 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺))
268 sspwuni 5030 . . . . . . . . . 10 (ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ 𝒫 (Base‘𝐺) ↔ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
269267, 268sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐴) → ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ⊆ (Base‘𝐺))
270166, 3, 255, 269mrcssd 17342 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2713dprdspan 19639 . . . . . . . . 9 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
27253, 271syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) = (𝐾 ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
273270, 272sseqtrrd 3963 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
27416, 17fnmpti 6585 . . . . . . . . . . . . 13 (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼
275 fnressn 7039 . . . . . . . . . . . . 13 (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) Fn 𝐼 ∧ (1st𝑥) ∈ 𝐼) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
276274, 52, 275sylancr 587 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩})
277124opeq2d 4812 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩ = ⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩)
278277sneqd 4574 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → {⟨(1st𝑥), ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥))⟩} = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
279276, 278eqtrd 2779 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)}) = {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩})
280279oveq2d 7300 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}))
281 dprdsubg 19636 . . . . . . . . . . . . 13 (𝐺dom DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
28253, 281syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺))
283 dprdsn 19648 . . . . . . . . . . . 12 (((1st𝑥) ∈ 𝐼 ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
28452, 282, 283syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐺dom DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩} ∧ (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
285284simprd 496 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd {⟨(1st𝑥), (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))⟩}) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
286280, 285eqtrd 2779 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) = (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
2874adantr 481 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
28818a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → dom (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) = 𝐼)
289 difss 4067 . . . . . . . . . . 11 (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼
290289a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼)
291 disjdif 4406 . . . . . . . . . . 11 ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅
292291a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ({(1st𝑥)} ∩ (𝐼 ∖ {(1st𝑥)})) = ∅)
293287, 288, 169, 290, 292, 1dprdcntz2 19650 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ {(1st𝑥)})) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
294286, 293eqsstrrd 3961 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
29529adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
29666, 245, 49, 295, 287, 3, 290dprd2dlem1 19653 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
297 resmpt 5948 . . . . . . . . . . . 12 ((𝐼 ∖ {(1st𝑥)}) ⊆ 𝐼 → ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
298289, 297ax-mp 5 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) = (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))
299298oveq2i 7295 . . . . . . . . . 10 (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐺 DProd (𝑖 ∈ (𝐼 ∖ {(1st𝑥)}) ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
300296, 299eqtr4di 2797 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
301300fveq2d 6787 . . . . . . . 8 ((𝜑𝑥𝐴) → ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = ((Cntz‘𝐺)‘(𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))))
302294, 301sseqtrrd 3963 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
303273, 302sstrd 3932 . . . . . 6 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
304225, 1lsmsubg 19268 . . . . . 6 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ ((Cntz‘𝐺)‘(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
305222, 224, 303, 304syl3anc 1370 . . . . 5 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺))
3063mrcsscl 17338 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐴 ∖ {𝑥})) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∧ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ∈ (SubGrp‘𝐺)) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
307166, 228, 305, 306syl3anc 1370 . . . 4 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
308 sslin 4169 . . . 4 ((𝐾 (𝑆 “ (𝐴 ∖ {𝑥}))) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
309307, 308syl 17 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))))
31041ffvelrnda 6970 . . . 4 ((𝜑𝑥𝐴) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
311225lsmlub 19279 . . . . . . . . . 10 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∈ (SubGrp‘𝐺)) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
312222, 310, 282, 311syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))) ∧ (𝑆𝑥) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))) ↔ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))))
313273, 121, 312mpbi2and 709 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ (𝐺 DProd (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))))
314313, 124sseqtrrd 3963 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)))
315287, 288, 290dprdres 19640 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) ∧ (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) ⊆ (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))))
316315simpld 495 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
3173dprdspan 19639 . . . . . . . . . . 11 (𝐺dom DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
318316, 317syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))))
319 df-ima 5603 . . . . . . . . . . . 12 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
320319unieqi 4853 . . . . . . . . . . 11 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})) = ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))
321320fveq2i 6786 . . . . . . . . . 10 (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ran ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)})))
322318, 321eqtr4di 2797 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐺 DProd ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) ↾ (𝐼 ∖ {(1st𝑥)}))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
323300, 322eqtrd 2779 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
324 eqimss 3978 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) = (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
325323, 324syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)}))))
326 ss2in 4171 . . . . . . 7 ((((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ⊆ ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∧ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ⊆ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
327314, 325, 326syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))))
328287, 288, 52, 2, 3dprddisj 19621 . . . . . 6 ((𝜑𝑥𝐴) → (((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))‘(1st𝑥)) ∩ (𝐾 ((𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))) “ (𝐼 ∖ {(1st𝑥)})))) = {(0g𝐺)})
329327, 328sseqtrd 3962 . . . . 5 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) ⊆ {(0g𝐺)})
330225lsmub2 19272 . . . . . . . . 9 (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑥) ∈ (SubGrp‘𝐺)) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
331222, 310, 330syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3322subg0cl 18772 . . . . . . . . 9 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑥))
333310, 332syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝑆𝑥))
334331, 333sseldd 3923 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)))
3352subg0cl 18772 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
336224, 335syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))
337334, 336elind 4129 . . . . . 6 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
338337snssd 4743 . . . . 5 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))))
339329, 338eqssd 3939 . . . 4 ((𝜑𝑥𝐴) → (((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝑆𝑥)) ∩ (𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)}))))) = {(0g𝐺)})
340 incom 4136 . . . . 5 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
34169, 101syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = ((1st𝑥)𝑆(2nd𝑥)))
34261fveq2d 6787 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆𝑥) = (𝑆‘⟨(1st𝑥), (2nd𝑥)⟩))
34399, 341, 3423eqtr4a 2805 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥))
344 eqimss2 3979 . . . . . . . . 9 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) = (𝑆𝑥) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
345343, 344syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)))
346 eldifsn 4721 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥))
34711ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → Rel 𝐴)
348 simprl 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ (𝐴 ↾ {(1st𝑥)}))
349247, 348sselid 3920 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝐴)
350347, 349, 74syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
351350fveq2d 6787 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = (𝑆‘⟨(1st𝑦), (2nd𝑦)⟩))
352351, 109eqtr4di 2797 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑦)𝑆(2nd𝑦)))
353350, 348eqeltrrd 2841 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}))
354 fvex 6796 . . . . . . . . . . . . . . . . . . . . . 22 (2nd𝑦) ∈ V
355354opelresi 5902 . . . . . . . . . . . . . . . . . . . . 21 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) ↔ ((1st𝑦) ∈ {(1st𝑥)} ∧ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝐴))
356355simplbi 498 . . . . . . . . . . . . . . . . . . . 20 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝐴 ↾ {(1st𝑥)}) → (1st𝑦) ∈ {(1st𝑥)})
357353, 356syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) ∈ {(1st𝑥)})
358 elsni 4579 . . . . . . . . . . . . . . . . . . 19 ((1st𝑦) ∈ {(1st𝑥)} → (1st𝑦) = (1st𝑥))
359357, 358syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (1st𝑦) = (1st𝑥))
360359oveq1d 7299 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑦)𝑆(2nd𝑦)) = ((1st𝑥)𝑆(2nd𝑦)))
361352, 360eqtrd 2779 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) = ((1st𝑥)𝑆(2nd𝑦)))
362348, 230eleqtrdi 2850 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})))
363 xp2nd 7873 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ({(1st𝑥)} × (𝐴 “ {(1st𝑥)})) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
364362, 363syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}))
365 simprr 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑦𝑥)
36661adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
367350, 366eqeq12d 2755 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩))
368 fvex 6796 . . . . . . . . . . . . . . . . . . . . . . . 24 (1st𝑦) ∈ V
369368, 354opth 5392 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ ((1st𝑦) = (1st𝑥) ∧ (2nd𝑦) = (2nd𝑥)))
370369baib 536 . . . . . . . . . . . . . . . . . . . . . 22 ((1st𝑦) = (1st𝑥) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
371359, 370syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨(1st𝑥), (2nd𝑥)⟩ ↔ (2nd𝑦) = (2nd𝑥)))
372367, 371bitrd 278 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦 = 𝑥 ↔ (2nd𝑦) = (2nd𝑥)))
373372necon3bid 2989 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑦𝑥 ↔ (2nd𝑦) ≠ (2nd𝑥)))
374365, 373mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ≠ (2nd𝑥))
375 eldifsn 4721 . . . . . . . . . . . . . . . . . 18 ((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↔ ((2nd𝑦) ∈ (𝐴 “ {(1st𝑥)}) ∧ (2nd𝑦) ≠ (2nd𝑥)))
376364, 374, 375sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
377 ovex 7317 . . . . . . . . . . . . . . . . 17 ((1st𝑥)𝑆(2nd𝑦)) ∈ V
378 difss 4067 . . . . . . . . . . . . . . . . . . 19 ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)})
379 resmpt 5948 . . . . . . . . . . . . . . . . . . 19 (((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ⊆ (𝐴 “ {(1st𝑥)}) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗)))
380378, 379ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = (𝑗 ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
381 oveq2 7292 . . . . . . . . . . . . . . . . . 18 (𝑗 = (2nd𝑦) → ((1st𝑥)𝑆𝑗) = ((1st𝑥)𝑆(2nd𝑦)))
382380, 381elrnmpt1s 5869 . . . . . . . . . . . . . . . . 17 (((2nd𝑦) ∈ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}) ∧ ((1st𝑥)𝑆(2nd𝑦)) ∈ V) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
383376, 377, 382sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → ((1st𝑥)𝑆(2nd𝑦)) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
384361, 383eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
385 df-ima 5603 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) = ran ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) ↾ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))
386384, 385eleqtrrdi 2851 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥)) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
387386ex 413 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → ((𝑦 ∈ (𝐴 ↾ {(1st𝑥)}) ∧ 𝑦𝑥) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
388346, 387syl5bi 241 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) → (𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
389388ralrimiv 3103 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
390231, 250sstrid 3933 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆)
391 funimass4 6843 . . . . . . . . . . . 12 ((Fun 𝑆 ∧ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}) ⊆ dom 𝑆) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
392246, 390, 391syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ((𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ↔ ∀𝑦 ∈ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})(𝑆𝑦) ∈ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
393389, 392mpbird 256 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
394393unissd 4850 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))
395 imassrn 5983 . . . . . . . . . . 11 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ ran (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))
396395, 267sstrid 3933 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺))
397 sspwuni 5030 . . . . . . . . . 10 (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
398396, 397sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})) ⊆ (Base‘𝐺))
399166, 3, 394, 398mrcssd 17342 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)}))))
400 ss2in 4171 . . . . . . . 8 (((𝑆𝑥) ⊆ ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∧ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ⊆ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
401345, 399, 400syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))))
40258a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → dom (𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) = (𝐴 “ {(1st𝑥)}))
40353, 402, 69, 2, 3dprddisj 19621 . . . . . . 7 ((𝜑𝑥𝐴) → (((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗))‘(2nd𝑥)) ∩ (𝐾 ((𝑗 ∈ (𝐴 “ {(1st𝑥)}) ↦ ((1st𝑥)𝑆𝑗)) “ ((𝐴 “ {(1st𝑥)}) ∖ {(2nd𝑥)})))) = {(0g𝐺)})
404401, 403sseqtrd 3962 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) ⊆ {(0g𝐺)})
4052subg0cl 18772 . . . . . . . . 9 ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
406222, 405syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → (0g𝐺) ∈ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))))
407333, 406elind 4129 . . . . . . 7 ((𝜑𝑥𝐴) → (0g𝐺) ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
408407snssd 4743 . . . . . 6 ((𝜑𝑥𝐴) → {(0g𝐺)} ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))))
409404, 408eqssd 3939 . . . . 5 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))) = {(0g𝐺)})
410340, 409eqtrid 2791 . . . 4 ((𝜑𝑥𝐴) → ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥}))) ∩ (𝑆𝑥)) = {(0g𝐺)})
411225, 222, 310, 224, 2, 339, 410lsmdisj2 19297 . . 3 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ ((𝐾 (𝑆 “ ((𝐴 ↾ {(1st𝑥)}) ∖ {𝑥})))(LSSum‘𝐺)(𝐾 (𝑆 “ (𝐴 ↾ (𝐼 ∖ {(1st𝑥)})))))) = {(0g𝐺)})
412309, 411sseqtrd 3962 . 2 ((𝜑𝑥𝐴) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐴 ∖ {𝑥})))) ⊆ {(0g𝐺)})
4131, 2, 3, 6, 40, 41, 162, 412dmdprdd 19611 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wral 3065  Vcvv 3433  cdif 3885  cun 3886  cin 3887  wss 3888  c0 4257  𝒫 cpw 4534  {csn 4562  cop 4568   cuni 4840   ciun 4925   class class class wbr 5075  cmpt 5158   × cxp 5588  dom cdm 5590  ran crn 5591  cres 5592  cima 5593  Rel wrel 5595  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  1st c1st 7838  2nd c2nd 7839  Basecbs 16921  0gc0g 17159  Moorecmre 17300  mrClscmrc 17301  ACScacs 17303  Grpcgrp 18586  SubGrpcsubg 18758  Cntzccntz 18930  LSSumclsm 19248   DProd cdprd 19605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-tpos 8051  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392  df-seq 13731  df-hash 14054  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-0g 17161  df-gsum 17162  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-ghm 18841  df-gim 18884  df-cntz 18932  df-oppg 18959  df-lsm 19250  df-cmn 19397  df-dprd 19607
This theorem is referenced by:  dprd2db  19655  dprd2d2  19656
  Copyright terms: Public domain W3C validator