Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshws0 | Structured version Visualization version GIF version |
Description: The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshws0 | ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrepswhash1.m | . . . 4 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
2 | 0ex 5200 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | eleq1 2825 | . . . . . . . . . . . 12 ⊢ (𝑊 = ∅ → (𝑊 ∈ V ↔ ∅ ∈ V)) | |
4 | 2, 3 | mpbiri 261 | . . . . . . . . . . 11 ⊢ (𝑊 = ∅ → 𝑊 ∈ V) |
5 | hasheq0 13930 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ V → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
6 | 5 | bicomd 226 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ V → (𝑊 = ∅ ↔ (♯‘𝑊) = 0)) |
7 | 4, 6 | syl 17 | . . . . . . . . . 10 ⊢ (𝑊 = ∅ → (𝑊 = ∅ ↔ (♯‘𝑊) = 0)) |
8 | 7 | ibi 270 | . . . . . . . . 9 ⊢ (𝑊 = ∅ → (♯‘𝑊) = 0) |
9 | 8 | oveq2d 7229 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (0..^(♯‘𝑊)) = (0..^0)) |
10 | fzo0 13266 | . . . . . . . 8 ⊢ (0..^0) = ∅ | |
11 | 9, 10 | eqtrdi 2794 | . . . . . . 7 ⊢ (𝑊 = ∅ → (0..^(♯‘𝑊)) = ∅) |
12 | 11 | rexeqdv 3326 | . . . . . 6 ⊢ (𝑊 = ∅ → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤)) |
13 | 12 | rabbidv 3390 | . . . . 5 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤}) |
14 | rex0 4272 | . . . . . . . 8 ⊢ ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤 | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑊 = ∅ → ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) |
16 | 15 | ralrimivw 3106 | . . . . . 6 ⊢ (𝑊 = ∅ → ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) |
17 | rabeq0 4299 | . . . . . 6 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) | |
18 | 16, 17 | sylibr 237 | . . . . 5 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅) |
19 | 13, 18 | eqtrd 2777 | . . . 4 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = ∅) |
20 | 1, 19 | syl5eq 2790 | . . 3 ⊢ (𝑊 = ∅ → 𝑀 = ∅) |
21 | 20 | fveq2d 6721 | . 2 ⊢ (𝑊 = ∅ → (♯‘𝑀) = (♯‘∅)) |
22 | hash0 13934 | . 2 ⊢ (♯‘∅) = 0 | |
23 | 21, 22 | eqtrdi 2794 | 1 ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 {crab 3065 Vcvv 3408 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 0cc0 10729 ..^cfzo 13238 ♯chash 13896 Word cword 14069 cyclShift ccsh 14353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |