MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshws0 Structured version   Visualization version   GIF version

Theorem cshws0 17042
Description: The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshws0 (𝑊 = ∅ → (♯‘𝑀) = 0)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshws0
StepHypRef Expression
1 cshwrepswhash1.m . . . 4 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
2 0ex 5307 . . . . . . . . . . . 12 ∅ ∈ V
3 eleq1 2820 . . . . . . . . . . . 12 (𝑊 = ∅ → (𝑊 ∈ V ↔ ∅ ∈ V))
42, 3mpbiri 258 . . . . . . . . . . 11 (𝑊 = ∅ → 𝑊 ∈ V)
5 hasheq0 14330 . . . . . . . . . . . 12 (𝑊 ∈ V → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
65bicomd 222 . . . . . . . . . . 11 (𝑊 ∈ V → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
74, 6syl 17 . . . . . . . . . 10 (𝑊 = ∅ → (𝑊 = ∅ ↔ (♯‘𝑊) = 0))
87ibi 267 . . . . . . . . 9 (𝑊 = ∅ → (♯‘𝑊) = 0)
98oveq2d 7428 . . . . . . . 8 (𝑊 = ∅ → (0..^(♯‘𝑊)) = (0..^0))
10 fzo0 13663 . . . . . . . 8 (0..^0) = ∅
119, 10eqtrdi 2787 . . . . . . 7 (𝑊 = ∅ → (0..^(♯‘𝑊)) = ∅)
1211rexeqdv 3325 . . . . . 6 (𝑊 = ∅ → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤))
1312rabbidv 3439 . . . . 5 (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤})
14 rex0 4357 . . . . . . . 8 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤
1514a1i 11 . . . . . . 7 (𝑊 = ∅ → ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤)
1615ralrimivw 3149 . . . . . 6 (𝑊 = ∅ → ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤)
17 rabeq0 4384 . . . . . 6 ({𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤)
1816, 17sylibr 233 . . . . 5 (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅)
1913, 18eqtrd 2771 . . . 4 (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = ∅)
201, 19eqtrid 2783 . . 3 (𝑊 = ∅ → 𝑀 = ∅)
2120fveq2d 6895 . 2 (𝑊 = ∅ → (♯‘𝑀) = (♯‘∅))
22 hash0 14334 . 2 (♯‘∅) = 0
2321, 22eqtrdi 2787 1 (𝑊 = ∅ → (♯‘𝑀) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  c0 4322  cfv 6543  (class class class)co 7412  0cc0 11116  ..^cfzo 13634  chash 14297  Word cword 14471   cyclShift ccsh 14745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator