![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshws0 | Structured version Visualization version GIF version |
Description: The size of the set of (different!) words resulting by cyclically shifting an empty word is 0. (Contributed by AV, 8-Nov-2018.) |
Ref | Expression |
---|---|
cshwrepswhash1.m | ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} |
Ref | Expression |
---|---|
cshws0 | ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwrepswhash1.m | . . . 4 ⊢ 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
2 | 0ex 5306 | . . . . . . . . . . . 12 ⊢ ∅ ∈ V | |
3 | eleq1 2821 | . . . . . . . . . . . 12 ⊢ (𝑊 = ∅ → (𝑊 ∈ V ↔ ∅ ∈ V)) | |
4 | 2, 3 | mpbiri 257 | . . . . . . . . . . 11 ⊢ (𝑊 = ∅ → 𝑊 ∈ V) |
5 | hasheq0 14319 | . . . . . . . . . . . 12 ⊢ (𝑊 ∈ V → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
6 | 5 | bicomd 222 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ V → (𝑊 = ∅ ↔ (♯‘𝑊) = 0)) |
7 | 4, 6 | syl 17 | . . . . . . . . . 10 ⊢ (𝑊 = ∅ → (𝑊 = ∅ ↔ (♯‘𝑊) = 0)) |
8 | 7 | ibi 266 | . . . . . . . . 9 ⊢ (𝑊 = ∅ → (♯‘𝑊) = 0) |
9 | 8 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝑊 = ∅ → (0..^(♯‘𝑊)) = (0..^0)) |
10 | fzo0 13652 | . . . . . . . 8 ⊢ (0..^0) = ∅ | |
11 | 9, 10 | eqtrdi 2788 | . . . . . . 7 ⊢ (𝑊 = ∅ → (0..^(♯‘𝑊)) = ∅) |
12 | 11 | rexeqdv 3326 | . . . . . 6 ⊢ (𝑊 = ∅ → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤)) |
13 | 12 | rabbidv 3440 | . . . . 5 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤}) |
14 | rex0 4356 | . . . . . . . 8 ⊢ ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤 | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑊 = ∅ → ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) |
16 | 15 | ralrimivw 3150 | . . . . . 6 ⊢ (𝑊 = ∅ → ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) |
17 | rabeq0 4383 | . . . . . 6 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅ ↔ ∀𝑤 ∈ Word 𝑉 ¬ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤) | |
18 | 16, 17 | sylibr 233 | . . . . 5 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ ∅ (𝑊 cyclShift 𝑛) = 𝑤} = ∅) |
19 | 13, 18 | eqtrd 2772 | . . . 4 ⊢ (𝑊 = ∅ → {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = ∅) |
20 | 1, 19 | eqtrid 2784 | . . 3 ⊢ (𝑊 = ∅ → 𝑀 = ∅) |
21 | 20 | fveq2d 6892 | . 2 ⊢ (𝑊 = ∅ → (♯‘𝑀) = (♯‘∅)) |
22 | hash0 14323 | . 2 ⊢ (♯‘∅) = 0 | |
23 | 21, 22 | eqtrdi 2788 | 1 ⊢ (𝑊 = ∅ → (♯‘𝑀) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 {crab 3432 Vcvv 3474 ∅c0 4321 ‘cfv 6540 (class class class)co 7405 0cc0 11106 ..^cfzo 13623 ♯chash 14286 Word cword 14460 cyclShift ccsh 14734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |