| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringirng | Structured version Visualization version GIF version | ||
| Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| 0ringirng.1 | ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) |
| Ref | Expression |
|---|---|
| 0ringirng | ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4309 | . . . 4 ⊢ ¬ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 4 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 5 | irngval.u | . . . . . . . 8 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 6 | 5 | subrgring 20498 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 8 | irngval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | elirng.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | 9 | crngringd 20172 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | 8 | fveq2i 6834 | . . . . . . . 8 ⊢ (♯‘𝐵) = (♯‘(Base‘𝑅)) |
| 12 | 0ringirng.1 | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) | |
| 13 | 0ringnnzr 20449 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
| 14 | 13 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(Base‘𝑅)) = 1) |
| 16 | 11, 15 | eqtrid 2780 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) |
| 17 | 8 | subrgss 20496 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 18 | 5, 8 | ressbas2 17156 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝑈)) |
| 19 | 4, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
| 20 | 19, 4 | eqeltrrd 2834 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅)) |
| 21 | 8, 10, 16, 20 | 0ringsubrg 33261 | . . . . . 6 ⊢ (𝜑 → (♯‘(Base‘𝑈)) = 1) |
| 22 | 2, 3, 7, 21 | 0ringmon1p 33566 | . . . . 5 ⊢ (𝜑 → (Monic1p‘𝑈) = ∅) |
| 23 | 22 | rexeqdv 3294 | . . . 4 ⊢ (𝜑 → (∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 )) |
| 24 | 1, 23 | mtbiri 327 | . . 3 ⊢ (𝜑 → ¬ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 25 | irngval.o | . . . . 5 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 26 | irngval.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 27 | 25, 5, 8, 26, 9, 4 | elirng 33771 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ))) |
| 28 | 27 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 29 | 24, 28 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆)) |
| 30 | 29 | eq0rdv 4356 | 1 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 ‘cfv 6489 (class class class)co 7355 1c1 11018 ♯chash 14244 Basecbs 17127 ↾s cress 17148 0gc0g 17350 Ringcrg 20159 CRingccrg 20160 NzRingcnzr 20436 SubRingcsubrg 20493 evalSub1 ces1 22248 Monic1pcmn1 26078 IntgRing cirng 33768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-rhm 20399 df-nzr 20437 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-cnfld 21301 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22020 df-psr1 22111 df-ply1 22113 df-coe1 22114 df-evls1 22250 df-mdeg 26007 df-deg1 26008 df-mon1 26083 df-irng 33769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |