![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringirng | Structured version Visualization version GIF version |
Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
Ref | Expression |
---|---|
irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
irngval.0 | ⊢ 0 = (0g‘𝑅) |
elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
0ringirng.1 | ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) |
Ref | Expression |
---|---|
0ringirng | ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4383 | . . . 4 ⊢ ¬ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 | |
2 | eqid 2740 | . . . . . 6 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
3 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
4 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
5 | irngval.u | . . . . . . . 8 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
6 | 5 | subrgring 20602 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Ring) |
8 | irngval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
9 | elirng.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | 9 | crngringd 20273 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 8 | fveq2i 6923 | . . . . . . . 8 ⊢ (♯‘𝐵) = (♯‘(Base‘𝑅)) |
12 | 0ringirng.1 | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) | |
13 | 0ringnnzr 20551 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
14 | 13 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1) |
15 | 10, 12, 14 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(Base‘𝑅)) = 1) |
16 | 11, 15 | eqtrid 2792 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) |
17 | 8 | subrgss 20600 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
18 | 5, 8 | ressbas2 17296 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝑈)) |
19 | 4, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
20 | 19, 4 | eqeltrrd 2845 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅)) |
21 | 8, 10, 16, 20 | 0ringsubrg 33223 | . . . . . 6 ⊢ (𝜑 → (♯‘(Base‘𝑈)) = 1) |
22 | 2, 3, 7, 21 | 0ringmon1p 33548 | . . . . 5 ⊢ (𝜑 → (Monic1p‘𝑈) = ∅) |
23 | 22 | rexeqdv 3335 | . . . 4 ⊢ (𝜑 → (∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 )) |
24 | 1, 23 | mtbiri 327 | . . 3 ⊢ (𝜑 → ¬ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
25 | irngval.o | . . . . 5 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
26 | irngval.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
27 | 25, 5, 8, 26, 9, 4 | elirng 33686 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ))) |
28 | 27 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
29 | 24, 28 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆)) |
30 | 29 | eq0rdv 4430 | 1 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 1c1 11185 ♯chash 14379 Basecbs 17258 ↾s cress 17287 0gc0g 17499 Ringcrg 20260 CRingccrg 20261 NzRingcnzr 20538 SubRingcsubrg 20595 evalSub1 ces1 22338 Monic1pcmn1 26185 IntgRing cirng 33683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-nzr 20539 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-cnfld 21388 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-psr1 22202 df-ply1 22204 df-coe1 22205 df-evls1 22340 df-mdeg 26114 df-deg1 26115 df-mon1 26190 df-irng 33684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |