Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringirng Structured version   Visualization version   GIF version

Theorem 0ringirng 33665
Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
0ringirng.1 (𝜑 → ¬ 𝑅 ∈ NzRing)
Assertion
Ref Expression
0ringirng (𝜑 → (𝑅 IntgRing 𝑆) = ∅)

Proof of Theorem 0ringirng
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rex0 4333 . . . 4 ¬ ∃𝑝 ∈ ∅ ((𝑂𝑝)‘𝑥) = 0
2 eqid 2734 . . . . . 6 (Monic1p𝑈) = (Monic1p𝑈)
3 eqid 2734 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
4 elirng.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 irngval.u . . . . . . . 8 𝑈 = (𝑅s 𝑆)
65subrgring 20521 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑈 ∈ Ring)
8 irngval.b . . . . . . 7 𝐵 = (Base‘𝑅)
9 elirng.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
109crngringd 20193 . . . . . . 7 (𝜑𝑅 ∈ Ring)
118fveq2i 6876 . . . . . . . 8 (♯‘𝐵) = (♯‘(Base‘𝑅))
12 0ringirng.1 . . . . . . . . 9 (𝜑 → ¬ 𝑅 ∈ NzRing)
13 0ringnnzr 20472 . . . . . . . . . 10 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
1413biimpar 477 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
1510, 12, 14syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(Base‘𝑅)) = 1)
1611, 15eqtrid 2781 . . . . . . 7 (𝜑 → (♯‘𝐵) = 1)
178subrgss 20519 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
185, 8ressbas2 17246 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝑈))
194, 17, 183syl 18 . . . . . . . 8 (𝜑𝑆 = (Base‘𝑈))
2019, 4eqeltrrd 2834 . . . . . . 7 (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅))
218, 10, 16, 200ringsubrg 33183 . . . . . 6 (𝜑 → (♯‘(Base‘𝑈)) = 1)
222, 3, 7, 210ringmon1p 33507 . . . . 5 (𝜑 → (Monic1p𝑈) = ∅)
2322rexeqdv 3304 . . . 4 (𝜑 → (∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂𝑝)‘𝑥) = 0 ))
241, 23mtbiri 327 . . 3 (𝜑 → ¬ ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )
25 irngval.o . . . . 5 𝑂 = (𝑅 evalSub1 𝑆)
26 irngval.0 . . . . 5 0 = (0g𝑅)
2725, 5, 8, 26, 9, 4elirng 33662 . . . 4 (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥𝐵 ∧ ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )))
2827simplbda 499 . . 3 ((𝜑𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )
2924, 28mtand 815 . 2 (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆))
3029eq0rdv 4380 1 (𝜑 → (𝑅 IntgRing 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  wrex 3059  wss 3924  c0 4306  cfv 6528  (class class class)co 7400  1c1 11123  chash 14338  Basecbs 17215  s cress 17238  0gc0g 17440  Ringcrg 20180  CRingccrg 20181  NzRingcnzr 20459  SubRingcsubrg 20516   evalSub1 ces1 22238  Monic1pcmn1 26070   IntgRing cirng 33659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-addf 11201
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-oi 9517  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-fzo 13662  df-seq 14010  df-hash 14339  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-ghm 19183  df-cntz 19287  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-rhm 20419  df-nzr 20460  df-subrng 20493  df-subrg 20517  df-lmod 20806  df-lss 20876  df-lsp 20916  df-cnfld 21303  df-assa 21800  df-asp 21801  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22019  df-psr1 22102  df-ply1 22104  df-coe1 22105  df-evls1 22240  df-mdeg 25999  df-deg1 26000  df-mon1 26075  df-irng 33660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator