| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringirng | Structured version Visualization version GIF version | ||
| Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| 0ringirng.1 | ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) |
| Ref | Expression |
|---|---|
| 0ringirng | ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4305 | . . . 4 ⊢ ¬ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 4 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 5 | irngval.u | . . . . . . . 8 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 6 | 5 | subrgring 20484 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 8 | irngval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | elirng.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | 9 | crngringd 20159 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | 8 | fveq2i 6820 | . . . . . . . 8 ⊢ (♯‘𝐵) = (♯‘(Base‘𝑅)) |
| 12 | 0ringirng.1 | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) | |
| 13 | 0ringnnzr 20435 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
| 14 | 13 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(Base‘𝑅)) = 1) |
| 16 | 11, 15 | eqtrid 2778 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) |
| 17 | 8 | subrgss 20482 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 18 | 5, 8 | ressbas2 17144 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝑈)) |
| 19 | 4, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
| 20 | 19, 4 | eqeltrrd 2832 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅)) |
| 21 | 8, 10, 16, 20 | 0ringsubrg 33210 | . . . . . 6 ⊢ (𝜑 → (♯‘(Base‘𝑈)) = 1) |
| 22 | 2, 3, 7, 21 | 0ringmon1p 33512 | . . . . 5 ⊢ (𝜑 → (Monic1p‘𝑈) = ∅) |
| 23 | 22 | rexeqdv 3293 | . . . 4 ⊢ (𝜑 → (∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 )) |
| 24 | 1, 23 | mtbiri 327 | . . 3 ⊢ (𝜑 → ¬ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 25 | irngval.o | . . . . 5 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 26 | irngval.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 27 | 25, 5, 8, 26, 9, 4 | elirng 33691 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ))) |
| 28 | 27 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 29 | 24, 28 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆)) |
| 30 | 29 | eq0rdv 4352 | 1 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ∅c0 4278 ‘cfv 6476 (class class class)co 7341 1c1 11002 ♯chash 14232 Basecbs 17115 ↾s cress 17136 0gc0g 17338 Ringcrg 20146 CRingccrg 20147 NzRingcnzr 20422 SubRingcsubrg 20479 evalSub1 ces1 22223 Monic1pcmn1 26053 IntgRing cirng 33688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-rhm 20385 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-cnfld 21287 df-assa 21785 df-asp 21786 df-ascl 21787 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-evls 22004 df-psr1 22087 df-ply1 22089 df-coe1 22090 df-evls1 22225 df-mdeg 25982 df-deg1 25983 df-mon1 26058 df-irng 33689 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |