| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0ringirng | Structured version Visualization version GIF version | ||
| Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| 0ringirng.1 | ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) |
| Ref | Expression |
|---|---|
| 0ringirng | ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4333 | . . . 4 ⊢ ¬ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 | |
| 2 | eqid 2734 | . . . . . 6 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 3 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 4 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 5 | irngval.u | . . . . . . . 8 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 6 | 5 | subrgring 20521 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 8 | irngval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | elirng.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | 9 | crngringd 20193 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | 8 | fveq2i 6876 | . . . . . . . 8 ⊢ (♯‘𝐵) = (♯‘(Base‘𝑅)) |
| 12 | 0ringirng.1 | . . . . . . . . 9 ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) | |
| 13 | 0ringnnzr 20472 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | |
| 14 | 13 | biimpar 477 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (♯‘(Base‘𝑅)) = 1) |
| 16 | 11, 15 | eqtrid 2781 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) = 1) |
| 17 | 8 | subrgss 20519 | . . . . . . . . 9 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 18 | 5, 8 | ressbas2 17246 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝑈)) |
| 19 | 4, 17, 18 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝑈)) |
| 20 | 19, 4 | eqeltrrd 2834 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅)) |
| 21 | 8, 10, 16, 20 | 0ringsubrg 33183 | . . . . . 6 ⊢ (𝜑 → (♯‘(Base‘𝑈)) = 1) |
| 22 | 2, 3, 7, 21 | 0ringmon1p 33507 | . . . . 5 ⊢ (𝜑 → (Monic1p‘𝑈) = ∅) |
| 23 | 22 | rexeqdv 3304 | . . . 4 ⊢ (𝜑 → (∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂‘𝑝)‘𝑥) = 0 )) |
| 24 | 1, 23 | mtbiri 327 | . . 3 ⊢ (𝜑 → ¬ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 25 | irngval.o | . . . . 5 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 26 | irngval.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 27 | 25, 5, 8, 26, 9, 4 | elirng 33662 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥 ∈ 𝐵 ∧ ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ))) |
| 28 | 27 | simplbda 499 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p‘𝑈)((𝑂‘𝑝)‘𝑥) = 0 ) |
| 29 | 24, 28 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆)) |
| 30 | 29 | eq0rdv 4380 | 1 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3924 ∅c0 4306 ‘cfv 6528 (class class class)co 7400 1c1 11123 ♯chash 14338 Basecbs 17215 ↾s cress 17238 0gc0g 17440 Ringcrg 20180 CRingccrg 20181 NzRingcnzr 20459 SubRingcsubrg 20516 evalSub1 ces1 22238 Monic1pcmn1 26070 IntgRing cirng 33659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-addf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-ofr 7667 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-oadd 8479 df-er 8714 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-sup 9449 df-oi 9517 df-dju 9908 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-xnn0 12568 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-fzo 13662 df-seq 14010 df-hash 14339 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-ghm 19183 df-cntz 19287 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-rhm 20419 df-nzr 20460 df-subrng 20493 df-subrg 20517 df-lmod 20806 df-lss 20876 df-lsp 20916 df-cnfld 21303 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-psr1 22102 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-mdeg 25999 df-deg1 26000 df-mon1 26075 df-irng 33660 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |