Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringirng Structured version   Visualization version   GIF version

Theorem 0ringirng 33299
Description: A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
0ringirng.1 (𝜑 → ¬ 𝑅 ∈ NzRing)
Assertion
Ref Expression
0ringirng (𝜑 → (𝑅 IntgRing 𝑆) = ∅)

Proof of Theorem 0ringirng
Dummy variables 𝑥 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rex0 4353 . . . 4 ¬ ∃𝑝 ∈ ∅ ((𝑂𝑝)‘𝑥) = 0
2 eqid 2727 . . . . . 6 (Monic1p𝑈) = (Monic1p𝑈)
3 eqid 2727 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
4 elirng.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 irngval.u . . . . . . . 8 𝑈 = (𝑅s 𝑆)
65subrgring 20502 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑈 ∈ Ring)
74, 6syl 17 . . . . . 6 (𝜑𝑈 ∈ Ring)
8 irngval.b . . . . . . 7 𝐵 = (Base‘𝑅)
9 elirng.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
109crngringd 20177 . . . . . . 7 (𝜑𝑅 ∈ Ring)
118fveq2i 6894 . . . . . . . 8 (♯‘𝐵) = (♯‘(Base‘𝑅))
12 0ringirng.1 . . . . . . . . 9 (𝜑 → ¬ 𝑅 ∈ NzRing)
13 0ringnnzr 20451 . . . . . . . . . 10 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
1413biimpar 477 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ¬ 𝑅 ∈ NzRing) → (♯‘(Base‘𝑅)) = 1)
1510, 12, 14syl2anc 583 . . . . . . . 8 (𝜑 → (♯‘(Base‘𝑅)) = 1)
1611, 15eqtrid 2779 . . . . . . 7 (𝜑 → (♯‘𝐵) = 1)
178subrgss 20500 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
185, 8ressbas2 17209 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝑈))
194, 17, 183syl 18 . . . . . . . 8 (𝜑𝑆 = (Base‘𝑈))
2019, 4eqeltrrd 2829 . . . . . . 7 (𝜑 → (Base‘𝑈) ∈ (SubRing‘𝑅))
218, 10, 16, 200ringsubrg 32917 . . . . . 6 (𝜑 → (♯‘(Base‘𝑈)) = 1)
222, 3, 7, 210ringmon1p 33168 . . . . 5 (𝜑 → (Monic1p𝑈) = ∅)
2322rexeqdv 3321 . . . 4 (𝜑 → (∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 ↔ ∃𝑝 ∈ ∅ ((𝑂𝑝)‘𝑥) = 0 ))
241, 23mtbiri 327 . . 3 (𝜑 → ¬ ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )
25 irngval.o . . . . 5 𝑂 = (𝑅 evalSub1 𝑆)
26 irngval.0 . . . . 5 0 = (0g𝑅)
2725, 5, 8, 26, 9, 4elirng 33296 . . . 4 (𝜑 → (𝑥 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑥𝐵 ∧ ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )))
2827simplbda 499 . . 3 ((𝜑𝑥 ∈ (𝑅 IntgRing 𝑆)) → ∃𝑝 ∈ (Monic1p𝑈)((𝑂𝑝)‘𝑥) = 0 )
2924, 28mtand 815 . 2 (𝜑 → ¬ 𝑥 ∈ (𝑅 IntgRing 𝑆))
3029eq0rdv 4400 1 (𝜑 → (𝑅 IntgRing 𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wrex 3065  wss 3944  c0 4318  cfv 6542  (class class class)co 7414  1c1 11131  chash 14313  Basecbs 17171  s cress 17200  0gc0g 17412  Ringcrg 20164  CRingccrg 20165  NzRingcnzr 20440  SubRingcsubrg 20495   evalSub1 ces1 22219  Monic1pcmn1 26048   IntgRing cirng 33293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-xnn0 12567  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-cring 20167  df-rhm 20400  df-nzr 20441  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-lsp 20845  df-cnfld 21267  df-assa 21774  df-asp 21775  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-evls 22005  df-psr1 22086  df-ply1 22088  df-coe1 22089  df-evls1 22221  df-mdeg 25975  df-deg1 25976  df-mon1 26053  df-irng 33294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator