MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2difr Structured version   Visualization version   GIF version

Theorem hashge2el2difr 14521
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020.)
Assertion
Ref Expression
hashge2el2difr ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2difr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hashv01gt1 14385 . . 3 (𝐷𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)))
2 hasheq0 14403 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅))
3 rexeq 3321 . . . . . . 7 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦))
4 rex0 4359 . . . . . . . 8 ¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦
5 pm2.21 123 . . . . . . . 8 (¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
64, 5mp1i 13 . . . . . . 7 (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
73, 6sylbid 240 . . . . . 6 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
82, 7biimtrdi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 0 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
98com12 32 . . . 4 ((♯‘𝐷) = 0 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
10 hash1snb 14459 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧}))
11 rexeq 3321 . . . . . . . . . 10 (𝐷 = {𝑧} → (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥𝑦))
1211rexeqbi1dv 3338 . . . . . . . . 9 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦))
13 vex 3483 . . . . . . . . . . 11 𝑧 ∈ V
14 neeq1 3002 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
1514rexbidv 3178 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦))
1613, 15rexsn 4681 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦)
17 neeq2 3003 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
1813, 17rexsn 4681 . . . . . . . . . 10 (∃𝑦 ∈ {𝑧}𝑧𝑦𝑧𝑧)
1916, 18bitri 275 . . . . . . . . 9 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦𝑧𝑧)
2012, 19bitrdi 287 . . . . . . . 8 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦𝑧𝑧))
21 equid 2010 . . . . . . . . 9 𝑧 = 𝑧
22 eqneqall 2950 . . . . . . . . 9 (𝑧 = 𝑧 → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2321, 22mp1i 13 . . . . . . . 8 (𝐷 = {𝑧} → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2420, 23sylbid 240 . . . . . . 7 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2524exlimiv 1929 . . . . . 6 (∃𝑧 𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2610, 25biimtrdi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 1 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
2726com12 32 . . . 4 ((♯‘𝐷) = 1 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
28 hashnn0pnf 14382 . . . . . . . 8 (𝐷𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞))
29 1z 12649 . . . . . . . . . . 11 1 ∈ ℤ
30 nn0z 12640 . . . . . . . . . . 11 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℤ)
31 zltp1le 12669 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷)))
3231biimpd 229 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
3329, 30, 32sylancr 587 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
34 df-2 12330 . . . . . . . . . . 11 2 = (1 + 1)
3534breq1i 5149 . . . . . . . . . 10 (2 ≤ (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷))
3633, 35imbitrrdi 252 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
37 2re 12341 . . . . . . . . . . . . 13 2 ∈ ℝ
3837rexri 11320 . . . . . . . . . . . 12 2 ∈ ℝ*
39 pnfge 13173 . . . . . . . . . . . 12 (2 ∈ ℝ* → 2 ≤ +∞)
4038, 39mp1i 13 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → 2 ≤ +∞)
41 breq2 5146 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞))
4240, 41mpbird 257 . . . . . . . . . 10 ((♯‘𝐷) = +∞ → 2 ≤ (♯‘𝐷))
4342a1d 25 . . . . . . . . 9 ((♯‘𝐷) = +∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4436, 43jaoi 857 . . . . . . . 8 (((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4528, 44syl 17 . . . . . . 7 (𝐷𝑉 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4645impcom 407 . . . . . 6 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → 2 ≤ (♯‘𝐷))
4746a1d 25 . . . . 5 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
4847ex 412 . . . 4 (1 < (♯‘𝐷) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
499, 27, 483jaoi 1429 . . 3 (((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
501, 49mpcom 38 . 2 (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
5150imp 406 1 ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1539  wex 1778  wcel 2107  wne 2939  wrex 3069  c0 4332  {csn 4625   class class class wbr 5142  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  2c2 12322  0cn0 12528  cz 12615  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371
This theorem is referenced by:  hashge2el2difb  14522  hashdmpropge2  14523
  Copyright terms: Public domain W3C validator