Step | Hyp | Ref
| Expression |
1 | | hashv01gt1 14059 |
. . 3
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷))) |
2 | | hasheq0 14078 |
. . . . . 6
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅)) |
3 | | rexeq 3343 |
. . . . . . 7
⊢ (𝐷 = ∅ → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦)) |
4 | | rex0 4291 |
. . . . . . . 8
⊢ ¬
∃𝑥 ∈ ∅
∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 |
5 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ ∅
∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → (∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
6 | 4, 5 | mp1i 13 |
. . . . . . 7
⊢ (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
7 | 3, 6 | sylbid 239 |
. . . . . 6
⊢ (𝐷 = ∅ → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
8 | 2, 7 | syl6bi 252 |
. . . . 5
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) = 0 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
9 | 8 | com12 32 |
. . . 4
⊢
((♯‘𝐷) =
0 → (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
10 | | hash1snb 14134 |
. . . . . 6
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧})) |
11 | | rexeq 3343 |
. . . . . . . . . 10
⊢ (𝐷 = {𝑧} → (∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦)) |
12 | 11 | rexeqbi1dv 3341 |
. . . . . . . . 9
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦)) |
13 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
14 | | neeq1 3006 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑦)) |
15 | 14 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧 ≠ 𝑦)) |
16 | 13, 15 | rexsn 4618 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
{𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧 ≠ 𝑦) |
17 | | neeq2 3007 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧)) |
18 | 13, 17 | rexsn 4618 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
{𝑧}𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧) |
19 | 16, 18 | bitri 274 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
{𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧) |
20 | 12, 19 | bitrdi 287 |
. . . . . . . 8
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧)) |
21 | | equid 2015 |
. . . . . . . . 9
⊢ 𝑧 = 𝑧 |
22 | | eqneqall 2954 |
. . . . . . . . 9
⊢ (𝑧 = 𝑧 → (𝑧 ≠ 𝑧 → 2 ≤ (♯‘𝐷))) |
23 | 21, 22 | mp1i 13 |
. . . . . . . 8
⊢ (𝐷 = {𝑧} → (𝑧 ≠ 𝑧 → 2 ≤ (♯‘𝐷))) |
24 | 20, 23 | sylbid 239 |
. . . . . . 7
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
25 | 24 | exlimiv 1933 |
. . . . . 6
⊢
(∃𝑧 𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
26 | 10, 25 | syl6bi 252 |
. . . . 5
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) = 1 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
27 | 26 | com12 32 |
. . . 4
⊢
((♯‘𝐷) =
1 → (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
28 | | hashnn0pnf 14056 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨
(♯‘𝐷) =
+∞)) |
29 | | 1z 12350 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
30 | | nn0z 12343 |
. . . . . . . . . . 11
⊢
((♯‘𝐷)
∈ ℕ0 → (♯‘𝐷) ∈ ℤ) |
31 | | zltp1le 12370 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 <
(♯‘𝐷) ↔ (1
+ 1) ≤ (♯‘𝐷))) |
32 | 31 | biimpd 228 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 <
(♯‘𝐷) → (1
+ 1) ≤ (♯‘𝐷))) |
33 | 29, 30, 32 | sylancr 587 |
. . . . . . . . . 10
⊢
((♯‘𝐷)
∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷))) |
34 | | df-2 12036 |
. . . . . . . . . . 11
⊢ 2 = (1 +
1) |
35 | 34 | breq1i 5081 |
. . . . . . . . . 10
⊢ (2 ≤
(♯‘𝐷) ↔ (1
+ 1) ≤ (♯‘𝐷)) |
36 | 33, 35 | syl6ibr 251 |
. . . . . . . . 9
⊢
((♯‘𝐷)
∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷))) |
37 | | 2re 12047 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
38 | 37 | rexri 11033 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ* |
39 | | pnfge 12866 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℝ* → 2 ≤ +∞) |
40 | 38, 39 | mp1i 13 |
. . . . . . . . . . 11
⊢
((♯‘𝐷) =
+∞ → 2 ≤ +∞) |
41 | | breq2 5078 |
. . . . . . . . . . 11
⊢
((♯‘𝐷) =
+∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞)) |
42 | 40, 41 | mpbird 256 |
. . . . . . . . . 10
⊢
((♯‘𝐷) =
+∞ → 2 ≤ (♯‘𝐷)) |
43 | 42 | a1d 25 |
. . . . . . . . 9
⊢
((♯‘𝐷) =
+∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷))) |
44 | 36, 43 | jaoi 854 |
. . . . . . . 8
⊢
(((♯‘𝐷)
∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 <
(♯‘𝐷) → 2
≤ (♯‘𝐷))) |
45 | 28, 44 | syl 17 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑉 → (1 < (♯‘𝐷) → 2 ≤
(♯‘𝐷))) |
46 | 45 | impcom 408 |
. . . . . 6
⊢ ((1 <
(♯‘𝐷) ∧
𝐷 ∈ 𝑉) → 2 ≤ (♯‘𝐷)) |
47 | 46 | a1d 25 |
. . . . 5
⊢ ((1 <
(♯‘𝐷) ∧
𝐷 ∈ 𝑉) → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
48 | 47 | ex 413 |
. . . 4
⊢ (1 <
(♯‘𝐷) →
(𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
49 | 9, 27, 48 | 3jaoi 1426 |
. . 3
⊢
(((♯‘𝐷)
= 0 ∨ (♯‘𝐷)
= 1 ∨ 1 < (♯‘𝐷)) → (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷)))) |
50 | 1, 49 | mpcom 38 |
. 2
⊢ (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (♯‘𝐷))) |
51 | 50 | imp 407 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦) → 2 ≤ (♯‘𝐷)) |