MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2difr Structured version   Visualization version   GIF version

Theorem hashge2el2difr 14447
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020.)
Assertion
Ref Expression
hashge2el2difr ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2difr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hashv01gt1 14310 . . 3 (𝐷𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)))
2 hasheq0 14328 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅))
3 rexeq 3320 . . . . . . 7 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦))
4 rex0 4357 . . . . . . . 8 ¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦
5 pm2.21 123 . . . . . . . 8 (¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
64, 5mp1i 13 . . . . . . 7 (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
73, 6sylbid 239 . . . . . 6 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
82, 7syl6bi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 0 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
98com12 32 . . . 4 ((♯‘𝐷) = 0 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
10 hash1snb 14384 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧}))
11 rexeq 3320 . . . . . . . . . 10 (𝐷 = {𝑧} → (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥𝑦))
1211rexeqbi1dv 3333 . . . . . . . . 9 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦))
13 vex 3477 . . . . . . . . . . 11 𝑧 ∈ V
14 neeq1 3002 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
1514rexbidv 3177 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦))
1613, 15rexsn 4686 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦)
17 neeq2 3003 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
1813, 17rexsn 4686 . . . . . . . . . 10 (∃𝑦 ∈ {𝑧}𝑧𝑦𝑧𝑧)
1916, 18bitri 275 . . . . . . . . 9 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦𝑧𝑧)
2012, 19bitrdi 287 . . . . . . . 8 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦𝑧𝑧))
21 equid 2014 . . . . . . . . 9 𝑧 = 𝑧
22 eqneqall 2950 . . . . . . . . 9 (𝑧 = 𝑧 → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2321, 22mp1i 13 . . . . . . . 8 (𝐷 = {𝑧} → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2420, 23sylbid 239 . . . . . . 7 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2524exlimiv 1932 . . . . . 6 (∃𝑧 𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2610, 25syl6bi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 1 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
2726com12 32 . . . 4 ((♯‘𝐷) = 1 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
28 hashnn0pnf 14307 . . . . . . . 8 (𝐷𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞))
29 1z 12597 . . . . . . . . . . 11 1 ∈ ℤ
30 nn0z 12588 . . . . . . . . . . 11 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℤ)
31 zltp1le 12617 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷)))
3231biimpd 228 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
3329, 30, 32sylancr 586 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
34 df-2 12280 . . . . . . . . . . 11 2 = (1 + 1)
3534breq1i 5155 . . . . . . . . . 10 (2 ≤ (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷))
3633, 35imbitrrdi 251 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
37 2re 12291 . . . . . . . . . . . . 13 2 ∈ ℝ
3837rexri 11277 . . . . . . . . . . . 12 2 ∈ ℝ*
39 pnfge 13115 . . . . . . . . . . . 12 (2 ∈ ℝ* → 2 ≤ +∞)
4038, 39mp1i 13 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → 2 ≤ +∞)
41 breq2 5152 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞))
4240, 41mpbird 257 . . . . . . . . . 10 ((♯‘𝐷) = +∞ → 2 ≤ (♯‘𝐷))
4342a1d 25 . . . . . . . . 9 ((♯‘𝐷) = +∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4436, 43jaoi 854 . . . . . . . 8 (((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4528, 44syl 17 . . . . . . 7 (𝐷𝑉 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4645impcom 407 . . . . . 6 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → 2 ≤ (♯‘𝐷))
4746a1d 25 . . . . 5 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
4847ex 412 . . . 4 (1 < (♯‘𝐷) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
499, 27, 483jaoi 1426 . . 3 (((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
501, 49mpcom 38 . 2 (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
5150imp 406 1 ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  w3o 1085   = wceq 1540  wex 1780  wcel 2105  wne 2939  wrex 3069  c0 4322  {csn 4628   class class class wbr 5148  cfv 6543  (class class class)co 7412  0cc0 11114  1c1 11115   + caddc 11117  +∞cpnf 11250  *cxr 11252   < clt 11253  cle 11254  2c2 12272  0cn0 12477  cz 12563  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296
This theorem is referenced by:  hashge2el2difb  14448  hashdmpropge2  14449
  Copyright terms: Public domain W3C validator