MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2difr Structured version   Visualization version   GIF version

Theorem hashge2el2difr 14300
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020.)
Assertion
Ref Expression
hashge2el2difr ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2difr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hashv01gt1 14165 . . 3 (𝐷𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)))
2 hasheq0 14183 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅))
3 rexeq 3307 . . . . . . 7 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦))
4 rex0 4309 . . . . . . . 8 ¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦
5 pm2.21 123 . . . . . . . 8 (¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
64, 5mp1i 13 . . . . . . 7 (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
73, 6sylbid 239 . . . . . 6 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
82, 7syl6bi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 0 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
98com12 32 . . . 4 ((♯‘𝐷) = 0 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
10 hash1snb 14239 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧}))
11 rexeq 3307 . . . . . . . . . 10 (𝐷 = {𝑧} → (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥𝑦))
1211rexeqbi1dv 3305 . . . . . . . . 9 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦))
13 vex 3446 . . . . . . . . . . 11 𝑧 ∈ V
14 neeq1 3004 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
1514rexbidv 3172 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦))
1613, 15rexsn 4635 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦)
17 neeq2 3005 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
1813, 17rexsn 4635 . . . . . . . . . 10 (∃𝑦 ∈ {𝑧}𝑧𝑦𝑧𝑧)
1916, 18bitri 275 . . . . . . . . 9 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦𝑧𝑧)
2012, 19bitrdi 287 . . . . . . . 8 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦𝑧𝑧))
21 equid 2015 . . . . . . . . 9 𝑧 = 𝑧
22 eqneqall 2952 . . . . . . . . 9 (𝑧 = 𝑧 → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2321, 22mp1i 13 . . . . . . . 8 (𝐷 = {𝑧} → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2420, 23sylbid 239 . . . . . . 7 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2524exlimiv 1933 . . . . . 6 (∃𝑧 𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2610, 25syl6bi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 1 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
2726com12 32 . . . 4 ((♯‘𝐷) = 1 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
28 hashnn0pnf 14162 . . . . . . . 8 (𝐷𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞))
29 1z 12456 . . . . . . . . . . 11 1 ∈ ℤ
30 nn0z 12449 . . . . . . . . . . 11 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℤ)
31 zltp1le 12476 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷)))
3231biimpd 228 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
3329, 30, 32sylancr 588 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
34 df-2 12142 . . . . . . . . . . 11 2 = (1 + 1)
3534breq1i 5104 . . . . . . . . . 10 (2 ≤ (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷))
3633, 35syl6ibr 252 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
37 2re 12153 . . . . . . . . . . . . 13 2 ∈ ℝ
3837rexri 11139 . . . . . . . . . . . 12 2 ∈ ℝ*
39 pnfge 12972 . . . . . . . . . . . 12 (2 ∈ ℝ* → 2 ≤ +∞)
4038, 39mp1i 13 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → 2 ≤ +∞)
41 breq2 5101 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞))
4240, 41mpbird 257 . . . . . . . . . 10 ((♯‘𝐷) = +∞ → 2 ≤ (♯‘𝐷))
4342a1d 25 . . . . . . . . 9 ((♯‘𝐷) = +∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4436, 43jaoi 855 . . . . . . . 8 (((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4528, 44syl 17 . . . . . . 7 (𝐷𝑉 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4645impcom 409 . . . . . 6 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → 2 ≤ (♯‘𝐷))
4746a1d 25 . . . . 5 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
4847ex 414 . . . 4 (1 < (♯‘𝐷) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
499, 27, 483jaoi 1427 . . 3 (((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
501, 49mpcom 38 . 2 (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
5150imp 408 1 ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845  w3o 1086   = wceq 1541  wex 1781  wcel 2106  wne 2941  wrex 3071  c0 4274  {csn 4578   class class class wbr 5097  cfv 6484  (class class class)co 7342  0cc0 10977  1c1 10978   + caddc 10980  +∞cpnf 11112  *cxr 11114   < clt 11115  cle 11116  2c2 12134  0cn0 12339  cz 12425  chash 14150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-oadd 8376  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-dju 9763  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-n0 12340  df-xnn0 12412  df-z 12426  df-uz 12689  df-fz 13346  df-hash 14151
This theorem is referenced by:  hashge2el2difb  14301  hashdmpropge2  14302
  Copyright terms: Public domain W3C validator