MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge2el2difr Structured version   Visualization version   GIF version

Theorem hashge2el2difr 14446
Description: A set with at least 2 different elements has size at least 2. (Contributed by AV, 14-Oct-2020.)
Assertion
Ref Expression
hashge2el2difr ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑉,𝑦

Proof of Theorem hashge2el2difr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 hashv01gt1 14310 . . 3 (𝐷𝑉 → ((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)))
2 hasheq0 14328 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 0 ↔ 𝐷 = ∅))
3 rexeq 3295 . . . . . . 7 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦))
4 rex0 4323 . . . . . . . 8 ¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦
5 pm2.21 123 . . . . . . . 8 (¬ ∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
64, 5mp1i 13 . . . . . . 7 (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
73, 6sylbid 240 . . . . . 6 (𝐷 = ∅ → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
82, 7biimtrdi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 0 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
98com12 32 . . . 4 ((♯‘𝐷) = 0 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
10 hash1snb 14384 . . . . . 6 (𝐷𝑉 → ((♯‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧}))
11 rexeq 3295 . . . . . . . . . 10 (𝐷 = {𝑧} → (∃𝑦𝐷 𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥𝑦))
1211rexeqbi1dv 3312 . . . . . . . . 9 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦))
13 vex 3451 . . . . . . . . . . 11 𝑧 ∈ V
14 neeq1 2987 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝑦𝑧𝑦))
1514rexbidv 3157 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦))
1613, 15rexsn 4646 . . . . . . . . . 10 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧𝑦)
17 neeq2 2988 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑧𝑦𝑧𝑧))
1813, 17rexsn 4646 . . . . . . . . . 10 (∃𝑦 ∈ {𝑧}𝑧𝑦𝑧𝑧)
1916, 18bitri 275 . . . . . . . . 9 (∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥𝑦𝑧𝑧)
2012, 19bitrdi 287 . . . . . . . 8 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦𝑧𝑧))
21 equid 2012 . . . . . . . . 9 𝑧 = 𝑧
22 eqneqall 2936 . . . . . . . . 9 (𝑧 = 𝑧 → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2321, 22mp1i 13 . . . . . . . 8 (𝐷 = {𝑧} → (𝑧𝑧 → 2 ≤ (♯‘𝐷)))
2420, 23sylbid 240 . . . . . . 7 (𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2524exlimiv 1930 . . . . . 6 (∃𝑧 𝐷 = {𝑧} → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
2610, 25biimtrdi 253 . . . . 5 (𝐷𝑉 → ((♯‘𝐷) = 1 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
2726com12 32 . . . 4 ((♯‘𝐷) = 1 → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
28 hashnn0pnf 14307 . . . . . . . 8 (𝐷𝑉 → ((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞))
29 1z 12563 . . . . . . . . . . 11 1 ∈ ℤ
30 nn0z 12554 . . . . . . . . . . 11 ((♯‘𝐷) ∈ ℕ0 → (♯‘𝐷) ∈ ℤ)
31 zltp1le 12583 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷)))
3231biimpd 229 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ (♯‘𝐷) ∈ ℤ) → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
3329, 30, 32sylancr 587 . . . . . . . . . 10 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → (1 + 1) ≤ (♯‘𝐷)))
34 df-2 12249 . . . . . . . . . . 11 2 = (1 + 1)
3534breq1i 5114 . . . . . . . . . 10 (2 ≤ (♯‘𝐷) ↔ (1 + 1) ≤ (♯‘𝐷))
3633, 35imbitrrdi 252 . . . . . . . . 9 ((♯‘𝐷) ∈ ℕ0 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
37 2re 12260 . . . . . . . . . . . . 13 2 ∈ ℝ
3837rexri 11232 . . . . . . . . . . . 12 2 ∈ ℝ*
39 pnfge 13090 . . . . . . . . . . . 12 (2 ∈ ℝ* → 2 ≤ +∞)
4038, 39mp1i 13 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → 2 ≤ +∞)
41 breq2 5111 . . . . . . . . . . 11 ((♯‘𝐷) = +∞ → (2 ≤ (♯‘𝐷) ↔ 2 ≤ +∞))
4240, 41mpbird 257 . . . . . . . . . 10 ((♯‘𝐷) = +∞ → 2 ≤ (♯‘𝐷))
4342a1d 25 . . . . . . . . 9 ((♯‘𝐷) = +∞ → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4436, 43jaoi 857 . . . . . . . 8 (((♯‘𝐷) ∈ ℕ0 ∨ (♯‘𝐷) = +∞) → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4528, 44syl 17 . . . . . . 7 (𝐷𝑉 → (1 < (♯‘𝐷) → 2 ≤ (♯‘𝐷)))
4645impcom 407 . . . . . 6 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → 2 ≤ (♯‘𝐷))
4746a1d 25 . . . . 5 ((1 < (♯‘𝐷) ∧ 𝐷𝑉) → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
4847ex 412 . . . 4 (1 < (♯‘𝐷) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
499, 27, 483jaoi 1430 . . 3 (((♯‘𝐷) = 0 ∨ (♯‘𝐷) = 1 ∨ 1 < (♯‘𝐷)) → (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷))))
501, 49mpcom 38 . 2 (𝐷𝑉 → (∃𝑥𝐷𝑦𝐷 𝑥𝑦 → 2 ≤ (♯‘𝐷)))
5150imp 406 1 ((𝐷𝑉 ∧ ∃𝑥𝐷𝑦𝐷 𝑥𝑦) → 2 ≤ (♯‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  c0 4296  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  2c2 12241  0cn0 12442  cz 12529  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296
This theorem is referenced by:  hashge2el2difb  14447  hashdmpropge2  14448
  Copyright terms: Public domain W3C validator