Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   GIF version

Theorem elpadd0 38668
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd0 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))

Proof of Theorem elpadd0
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 3035 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ ¬ (𝑋 = ∅ ∨ 𝑌 = ∅))
21bicomi 223 . . 3 (¬ (𝑋 = ∅ ∨ 𝑌 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
32con1bii 356 . 2 (¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
4 eqid 2732 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2732 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7elpadd 38658 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
9 rex0 4356 . . . . . . . 8 ¬ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
10 rexeq 3321 . . . . . . . 8 (𝑋 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
119, 10mtbiri 326 . . . . . . 7 (𝑋 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
12 rex0 4356 . . . . . . . . . 10 ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
1312a1i 11 . . . . . . . . 9 (𝑞𝑋 → ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1413nrex 3074 . . . . . . . 8 ¬ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
15 rexeq 3321 . . . . . . . . 9 (𝑌 = ∅ → (∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1615rexbidv 3178 . . . . . . . 8 (𝑌 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1714, 16mtbiri 326 . . . . . . 7 (𝑌 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1811, 17jaoi 855 . . . . . 6 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1918intnand 489 . . . . 5 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
20 biorf 935 . . . . 5 (¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
2119, 20syl 17 . . . 4 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
22 orcom 868 . . . 4 (((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
2321, 22bitr2di 287 . . 3 ((𝑋 = ∅ ∨ 𝑌 = ∅) → (((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ (𝑆𝑋𝑆𝑌)))
248, 23sylan9bb 510 . 2 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ (𝑋 = ∅ ∨ 𝑌 = ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
253, 24sylan2b 594 1 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  wss 3947  c0 4321   class class class wbr 5147  cfv 6540  (class class class)co 7405  lecple 17200  joincjn 18260  Atomscatm 38121  +𝑃cpadd 38654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-padd 38655
This theorem is referenced by:  paddval0  38669
  Copyright terms: Public domain W3C validator