Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   GIF version

Theorem elpadd0 39803
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd0 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))

Proof of Theorem elpadd0
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 3018 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ ¬ (𝑋 = ∅ ∨ 𝑌 = ∅))
21bicomi 224 . . 3 (¬ (𝑋 = ∅ ∨ 𝑌 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
32con1bii 356 . 2 (¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
4 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2729 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7elpadd 39793 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
9 rex0 4323 . . . . . . . 8 ¬ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
10 rexeq 3295 . . . . . . . 8 (𝑋 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
119, 10mtbiri 327 . . . . . . 7 (𝑋 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
12 rex0 4323 . . . . . . . . . 10 ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
1312a1i 11 . . . . . . . . 9 (𝑞𝑋 → ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1413nrex 3057 . . . . . . . 8 ¬ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
15 rexeq 3295 . . . . . . . . 9 (𝑌 = ∅ → (∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1615rexbidv 3157 . . . . . . . 8 (𝑌 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1714, 16mtbiri 327 . . . . . . 7 (𝑌 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1811, 17jaoi 857 . . . . . 6 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1918intnand 488 . . . . 5 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
20 biorf 936 . . . . 5 (¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
2119, 20syl 17 . . . 4 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
22 orcom 870 . . . 4 (((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
2321, 22bitr2di 288 . . 3 ((𝑋 = ∅ ∨ 𝑌 = ∅) → (((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ (𝑆𝑋𝑆𝑌)))
248, 23sylan9bb 509 . 2 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ (𝑋 = ∅ ∨ 𝑌 = ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
253, 24sylan2b 594 1 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  Atomscatm 39256  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-padd 39790
This theorem is referenced by:  paddval0  39804
  Copyright terms: Public domain W3C validator