Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   GIF version

Theorem elpadd0 37104
Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpadd0 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))

Proof of Theorem elpadd0
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 3082 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ ¬ (𝑋 = ∅ ∨ 𝑌 = ∅))
21bicomi 227 . . 3 (¬ (𝑋 = ∅ ∨ 𝑌 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
32con1bii 360 . 2 (¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
4 eqid 2801 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2801 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7elpadd 37094 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
9 rex0 4274 . . . . . . . 8 ¬ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
10 rexeq 3362 . . . . . . . 8 (𝑋 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
119, 10mtbiri 330 . . . . . . 7 (𝑋 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
12 rex0 4274 . . . . . . . . . 10 ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
1312a1i 11 . . . . . . . . 9 (𝑞𝑋 → ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1413nrex 3231 . . . . . . . 8 ¬ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
15 rexeq 3362 . . . . . . . . 9 (𝑌 = ∅ → (∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1615rexbidv 3259 . . . . . . . 8 (𝑌 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1714, 16mtbiri 330 . . . . . . 7 (𝑌 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1811, 17jaoi 854 . . . . . 6 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1918intnand 492 . . . . 5 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
20 biorf 934 . . . . 5 (¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
2119, 20syl 17 . . . 4 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
22 orcom 867 . . . 4 (((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
2321, 22syl6rbb 291 . . 3 ((𝑋 = ∅ ∨ 𝑌 = ∅) → (((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ (𝑆𝑋𝑆𝑌)))
248, 23sylan9bb 513 . 2 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ (𝑋 = ∅ ∨ 𝑌 = ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
253, 24sylan2b 596 1 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110  wss 3884  c0 4246   class class class wbr 5033  cfv 6328  (class class class)co 7139  lecple 16568  joincjn 17550  Atomscatm 36558  +𝑃cpadd 37090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-padd 37091
This theorem is referenced by:  paddval0  37105
  Copyright terms: Public domain W3C validator